Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140.562
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 395-416, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902315

RESUMEN

Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.


Asunto(s)
Inmunidad Celular , Mitocondrias , Animales , Humanos
2.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677474

RESUMEN

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Asunto(s)
Metabolismo Energético , Inmunidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Humanos , Memoria Inmunológica , Inmunoterapia , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Mitocondrias/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/citología
3.
Annu Rev Biochem ; 93(1): 47-77, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594940

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is replicated and transcribed by phage-like DNA and RNA polymerases, and our understanding of these processes has progressed substantially over the last several decades. Molecular mechanisms have been elucidated by biochemistry and structural biology and essential in vivo roles established by cell biology and mouse genetics. Single molecules of mtDNA are packaged by mitochondrial transcription factor A into mitochondrial nucleoids, and their level of compaction influences the initiation of both replication and transcription. Mutations affecting the molecular machineries replicating and transcribing mtDNA are important causes of human mitochondrial disease, reflecting the critical role of the genome in oxidative phosphorylation system biogenesis. Mechanisms controlling mtDNA replication and transcription still need to be clarified, and future research in this area is likely to open novel therapeutic possibilities for treating mitochondrial dysfunction.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Transcripción Genética , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mutación , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
4.
Cell ; 187(11): 2601-2627, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788685

RESUMEN

Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Envejecimiento/metabolismo , Transducción de Señal , Metabolismo Energético
5.
Cell ; 187(16): 4289-4304.e26, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942015

RESUMEN

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.


Asunto(s)
Matriz Extracelular , Homeostasis , Mitocondrias , Respuesta de Proteína Desplegada , Matriz Extracelular/metabolismo , Animales , Mitocondrias/metabolismo , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Dinámicas Mitocondriales , Ratones , Transducción de Señal , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/inmunología
6.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906101

RESUMEN

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Asunto(s)
Gametogénesis , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Coenzima A Ligasas/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Tomografía con Microscopio Electrónico , Meiosis , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporas Fúngicas/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína
7.
Cell ; 187(3): 659-675.e18, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215760

RESUMEN

The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.


Asunto(s)
Caenorhabditis elegans , Complejo I de Transporte de Electrón , Hipoxia , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Oxígeno/metabolismo
8.
Cell ; 187(14): 3619-3637.e27, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38851188

RESUMEN

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Dinámicas Mitocondriales , Membranas Mitocondriales , Proteínas Mitocondriales , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Humanos , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Animales , Células HeLa , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Autofagia
9.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653240

RESUMEN

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Aminoácidos de Cadena Ramificada , Resistencia a la Insulina , Mitocondrias , Nitrógeno , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Nitrógeno/metabolismo , Mitocondrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Ratones Endogámicos C57BL , Estrés Oxidativo , Insulina/metabolismo , Dieta Alta en Grasa , Adipocitos Marrones/metabolismo , Transducción de Señal
10.
Cell ; 187(12): 2897-2897.e1, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848671

RESUMEN

Resmetirom is an oral selective THR-ß agonist conditionally approved for the treatment of patients with noncirrhotic MASH with moderate to advanced fibrosis. Resmetirom restores mitochondrial and hepatic metabolic function; reduces atherogenic lipids; improves hepatic steatosis, inflammation, and fibrosis; and has no significant effect on THR-α. To view this Bench to Bedside, open or download the PDF.


Asunto(s)
Cirrosis Hepática , Piridazinas , Uracilo , Animales , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Piridazinas/uso terapéutico , Uracilo/análogos & derivados
11.
Annu Rev Biochem ; 92: 299-332, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001140

RESUMEN

According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Inmunidad Innata/genética , Envejecimiento/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mamíferos/genética
12.
Cell ; 186(15): 3307-3324.e30, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37385249

RESUMEN

The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.


Asunto(s)
Mitocondrias , Proteoma , Proteoma/metabolismo , Mitocondrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometría de Masas/métodos , Regulación de la Expresión Génica
13.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36827974

RESUMEN

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Asunto(s)
Mitocondrias , Organogénesis , Animales , Femenino , Humanos , Ratones , Embarazo , Linaje de la Célula , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , Especificidad de Órganos , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
14.
Cell ; 186(11): 2361-2379.e25, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192619

RESUMEN

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.


Asunto(s)
Antineoplásicos , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Núcleo Celular/metabolismo , Humanos
15.
Annu Rev Biochem ; 91: 89-106, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35320684

RESUMEN

Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons.


Asunto(s)
Mitocondrias , Purinas , Animales , Mamíferos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Purinas/metabolismo
16.
Annu Rev Biochem ; 91: 679-703, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287471

RESUMEN

Mitochondria are central to energy production, metabolism and signaling, and apoptosis. To make new mitochondria from preexisting mitochondria, the cell needs to import mitochondrial proteins from the cytosol into the mitochondria with the aid of translocators in the mitochondrial membranes. The translocase of the outer membrane (TOM) complex, an outer membrane translocator, functions as an entry gate for most mitochondrial proteins. Although high-resolution structures of the receptor subunits of the TOM complex were deposited in the early 2000s, those of entire TOM complexes became available only in 2019. The structural details of these TOM complexes, consisting of the dimer of the ß-barrel import channel Tom40 and four α-helical membrane proteins, revealed the presence of several distinct paths and exits for the translocation of over 1,000 different mitochondrial precursor proteins. High-resolution structures of TOM complexes now open up a new era of studies on the structures, functions, and dynamics of the mitochondrial import system.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Cell ; 185(8): 1444-1444.e1, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35427500

RESUMEN

The peroxisome proliferator-activated receptor γ coactivator-1α (Ppargc1a) gene encodes several PGC-1α isoforms that regulate mitochondrial bioenergetics and cellular adaptive processes. Expressing specific PGC-1α isoforms in mice can confer protection in different disease models. This SnapShot summarizes how regulation of Ppargc1a transcription, splicing, translation, protein stability, and activity underlies its multifaceted functions. To view this SnapShot, open or download the PDF.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias , Animales , Biología , Metabolismo Energético , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
18.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35907404

RESUMEN

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Asunto(s)
Mitocondrias , Necroptosis , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Humanos , Inflamasomas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macrófagos , Ratones , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Cell ; 185(10): 1764-1776.e12, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35472302

RESUMEN

Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Animales , Sistemas CRISPR-Cas , Citosina/metabolismo , ADN Mitocondrial/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Purinas
20.
Cell ; 185(9): 1451-1454, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35487189

RESUMEN

Natural killer (NK)-based therapies against cancer are emerging, but the understanding of NK cell functions needs to be completed to optimize these treatments. In this issue, Pan et al. (2022) show that pro-apoptotic molecules, such as BH3-mimetics, synergize with NK cells to induce mitochondria-driven apoptosis in tumor cells, thereby enhancing the efficacy of NK cell therapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Apoptosis , Humanos , Inmunoterapia Adoptiva , Mitocondrias/patología , Neoplasias/patología , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA