Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.321
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(19): 5223-5225, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303689

RESUMEN

DdmDE is a novel plasmid defense system that was discovered in the seventh pandemic Vibrio cholerae strain of the biotype O1 EI Tor. In this issue of Cell, Yang and coworkers reveal the mechanisms underlying the assembly and activation of the DdmDE defense system.


Asunto(s)
Plásmidos , Vibrio cholerae , Plásmidos/metabolismo , Plásmidos/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/enzimología , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética
2.
Cell ; 186(25): 5674-5674.e1, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065084

RESUMEN

MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind and repress target RNAs. However, some unusual targets trigger destruction of the miRNA, a phenomenon known as target-directed miRNA degradation (TDMD). This Snapshot depicts our current understanding of how TDMD occurs and highlights established functions of TDMD in viruses and model organisms. To view this SnapShot, open or download the PDF.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Estabilidad del ARN
3.
Cell ; 185(9): 1471-1486.e19, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35381200

RESUMEN

Argonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood. We demonstrate that short prokaryotic Argonaute and the associated TIR-APAZ (SPARTA) proteins form heterodimeric complexes. Upon guide RNA-mediated target DNA binding, four SPARTA heterodimers form oligomers in which TIR domain-mediated NAD(P)ase activity is unleashed. When expressed in Escherichia coli, SPARTA is activated in the presence of highly transcribed multicopy plasmid DNA, which causes cell death through NAD(P)+ depletion. This results in the removal of plasmid-invaded cells from bacterial cultures. Furthermore, we show that SPARTA can be repurposed for the programmable detection of DNA sequences. In conclusion, our work identifies SPARTA as a prokaryotic immune system that reduces cell viability upon RNA-guided detection of invading DNA.


Asunto(s)
Proteínas Argonautas , Células Procariotas/fisiología , Proteínas Argonautas/metabolismo , ADN/metabolismo , Células Procariotas/citología , Células Procariotas/metabolismo , ARN Guía de Kinetoplastida
4.
Nat Rev Mol Cell Biol ; 24(2): 123-141, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36104626

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.


Asunto(s)
Proteínas Argonautas , ARN de Interacción con Piwi , Animales , Ratones , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos Transponibles de ADN , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
5.
Cell ; 182(6): 1381-1383, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946780

RESUMEN

Eukaryotic Argonaute proteins strictly mediate RNA-guided RNA interference. In contrast, prokaryotic Argonautes can utilize DNA guides to target complementary DNA sequences to protect their hosts against invading DNA. In this issue of Cell, Jolly and colleagues demonstrate that Thermus thermophilus Argonaute additionally participates in DNA replication by unlinking catenated chromosomes.


Asunto(s)
Proteínas Argonautas , Thermus thermophilus , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Cromosomas/metabolismo , Replicación del ADN , Células Procariotas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
6.
Cell ; 182(6): 1545-1559.e18, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32846159

RESUMEN

In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , Replicación del ADN/genética , ADN/metabolismo , Thermus thermophilus/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromosomas/metabolismo , Ciprofloxacina/farmacología , ADN/genética , Replicación del ADN/efectos de los fármacos , Endonucleasas/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Proteínas Recombinantes , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Imagen Individual de Molécula , Espectrometría de Masas en Tándem , Thermus thermophilus/genética , Thermus thermophilus/crecimiento & desarrollo , Thermus thermophilus/ultraestructura , Inhibidores de Topoisomerasa II/farmacología
7.
Nat Rev Mol Cell Biol ; 23(3): 185-203, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34707241

RESUMEN

Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.


Asunto(s)
Proteínas Argonautas , MicroARNs , ARN Interferente Pequeño , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Plantas/genética , Plantas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
8.
Nat Rev Mol Cell Biol ; 23(10): 645-662, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35710830

RESUMEN

RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.


Asunto(s)
MicroARNs , ARN Viral , Antivirales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Resistencia a la Enfermedad/genética , MicroARNs/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Plantas/genética , Interferencia de ARN , ARN de Planta , ARN Interferente Pequeño/metabolismo
9.
Cell ; 177(7): 1674-1676, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199913

RESUMEN

In this issue, Moore et al. and Posner et al., provide evidence for how the activity of the nervous system in C. elegans results in gene expression changes in the germline to pass on parental experiences and learned behavior to their progeny.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas Argonautas , Células Germinativas , Factor de Crecimiento Transformador beta
10.
Cell ; 177(7): 1827-1841.e12, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31178117

RESUMEN

The ability to inherit learned information from parents could be evolutionarily beneficial, enabling progeny to better survive dangerous conditions. We discovered that, after C. elegans have learned to avoid the pathogenic bacteria Pseudomonas aeruginosa (PA14), they pass this learned behavior on to their progeny, through either the male or female germline, persisting through the fourth generation. Expression of the TGF-ß ligand DAF-7 in the ASI sensory neurons correlates with and is required for this transgenerational avoidance behavior. Additionally, the Piwi Argonaute homolog PRG-1 and its downstream molecular components are required for transgenerational inheritance of both avoidance behavior and ASI daf-7 expression. Animals whose parents have learned to avoid PA14 display a PA14 avoidance-based survival advantage that is also prg-1 dependent, suggesting an adaptive response. Transgenerational epigenetic inheritance of pathogenic learning may optimize progeny decisions to increase survival in fluctuating environmental conditions.


Asunto(s)
Proteínas Argonautas , Reacción de Prevención , Conducta Animal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epigénesis Genética , Factor de Crecimiento Transformador beta , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pseudomonas aeruginosa , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
11.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31178120

RESUMEN

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Neuronas/metabolismo , ARN de Helminto , ARN Pequeño no Traducido , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/citología , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética
12.
Cell ; 179(7): 1566-1581.e16, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835033

RESUMEN

Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.


Asunto(s)
Proteínas Argonautas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Interferente Pequeño/metabolismo , Espermatogénesis , Regiones no Traducidas 3' , Animales , Proteínas Argonautas/genética , Emparejamiento Base , Células Cultivadas , Proteína 1 Similar a ELAV/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética
13.
Cell ; 177(2): 428-445.e18, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951670

RESUMEN

The heterogeneity of small extracellular vesicles and presence of non-vesicular extracellular matter have led to debate about contents and functional properties of exosomes. Here, we employ high-resolution density gradient fractionation and direct immunoaffinity capture to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material. Extracellular RNA, RNA-binding proteins, and other cellular proteins are differentially expressed in exosomes and non-vesicle compartments. Argonaute 1-4, glycolytic enzymes, and cytoskeletal proteins were not detected in exosomes. We identify annexin A1 as a specific marker for microvesicles that are shed directly from the plasma membrane. We further show that small extracellular vesicles are not vehicles of active DNA release. Instead, we propose a new model for active secretion of extracellular DNA through an autophagy- and multivesicular-endosome-dependent but exosome-independent mechanism. This study demonstrates the need for a reassessment of exosome composition and offers a framework for a clearer understanding of extracellular vesicle heterogeneity.


Asunto(s)
Exosomas/metabolismo , Exosomas/fisiología , Anexina A1/metabolismo , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , ADN/metabolismo , Exosomas/química , Vesículas Extracelulares , Femenino , Humanos , Lisosomas/metabolismo , Masculino , Proteínas/metabolismo , ARN/metabolismo
14.
Cell ; 176(5): 1014-1025.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30794773

RESUMEN

Bioactive molecules can pass between microbiota and host to influence host cellular functions. However, general principles of interspecies communication have not been discovered. We show here in C. elegans that nitric oxide derived from resident bacteria promotes widespread S-nitrosylation of the host proteome. We further show that microbiota-dependent S-nitrosylation of C. elegans Argonaute protein (ALG-1)-at a site conserved and S-nitrosylated in mammalian Argonaute 2 (AGO2)-alters its function in controlling gene expression via microRNAs. By selectively eliminating nitric oxide generation by the microbiota or S-nitrosylation in ALG-1, we reveal unforeseen effects on host development. Thus, the microbiota can shape the post-translational landscape of the host proteome to regulate microRNA activity, gene expression, and host development. Our findings suggest a general mechanism by which the microbiota may control host cellular functions, as well as a new role for gasotransmitters.


Asunto(s)
Interacciones Microbiota-Huesped/genética , MicroARNs/metabolismo , Óxido Nítrico/metabolismo , Animales , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células HEK293 , Células HeLa , Humanos , MicroARNs/fisiología , Microbiota/genética , Óxido Nítrico/fisiología , Procesamiento Proteico-Postraduccional/genética , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética
15.
Cell ; 178(4): 964-979.e20, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398345

RESUMEN

PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN Helicasas DEAD-box/metabolismo , Elementos Transponibles de ADN , Silenciador del Gen , Células Germinativas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética , Proteína Exportina 1
16.
Cell ; 173(4): 946-957.e16, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29576456

RESUMEN

miRISC is a multi-protein assembly that uses microRNAs (miRNAs) to identify mRNAs targeted for repression. Dozens of miRISC-associated proteins have been identified, and interactions between many factors have been examined in detail. However, the physical nature of the complex remains unknown. Here, we show that two core protein components of human miRISC, Argonaute2 (Ago2) and TNRC6B, condense into phase-separated droplets in vitro and in live cells. Phase separation is promoted by multivalent interactions between the glycine/tryptophan (GW)-rich domain of TNRC6B and three evenly spaced tryptophan-binding pockets in the Ago2 PIWI domain. miRISC droplets formed in vitro recruit deadenylation factors and sequester target RNAs from the bulk solution. The condensation of miRISC is accompanied by accelerated deadenylation of target RNAs bound to Ago2. The combined results may explain how miRISC silences mRNAs of varying size and structure and provide experimental evidence that protein-mediated phase separation can facilitate an RNA processing reaction.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Proteínas Argonautas/genética , Sitios de Unión , Recuperación de Fluorescencia tras Fotoblanqueo , Células HEK293 , Humanos , Transición de Fase , Unión Proteica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo
17.
Cell ; 173(7): 1593-1608.e20, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906446

RESUMEN

Proliferating cells known as neoblasts include pluripotent stem cells (PSCs) that sustain tissue homeostasis and regeneration of lost body parts in planarians. However, the lack of markers to prospectively identify and isolate these adult PSCs has significantly hampered their characterization. We used single-cell RNA sequencing (scRNA-seq) and single-cell transplantation to address this long-standing issue. Large-scale scRNA-seq of sorted neoblasts unveiled a novel subtype of neoblast (Nb2) characterized by high levels of PIWI-1 mRNA and protein and marked by a conserved cell-surface protein-coding gene, tetraspanin 1 (tspan-1). tspan-1-positive cells survived sub-lethal irradiation, underwent clonal expansion to repopulate whole animals, and when purified with an anti-TSPAN-1 antibody, rescued the viability of lethally irradiated animals after single-cell transplantation. The first prospective isolation of an adult PSC bridges a conceptual dichotomy between functionally and molecularly defined neoblasts, shedding light on mechanisms governing in vivo pluripotency and a source of regeneration in animals. VIDEO ABSTRACT.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas del Helminto/metabolismo , Planarias/fisiología , Tetraspaninas/metabolismo , Animales , Proteínas Argonautas/antagonistas & inhibidores , Proteínas Argonautas/genética , Ciclo Celular/efectos de la radiación , Regulación de la Expresión Génica , Proteínas del Helminto/antagonistas & inhibidores , Proteínas del Helminto/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Análisis de Componente Principal , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN de Helminto/química , ARN de Helminto/aislamiento & purificación , ARN de Helminto/metabolismo , Regeneración/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Tetraspaninas/genética , Irradiación Corporal Total
18.
Cell ; 169(6): 1090-1104.e13, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552346

RESUMEN

Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Azoospermia/genética , Mutación , Animales , Azoospermia/metabolismo , Cromatina/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Histonas/metabolismo , Humanos , Intrones , Masculino , Ratones , Linaje , Protaminas/metabolismo , Proteolisis , Espermatogénesis , Ubiquitina-Proteína Ligasas , Ubiquitinación
19.
Cell ; 169(2): 314-325.e13, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388413

RESUMEN

Effective antiviral protection in multicellular organisms relies on both cell-autonomous and systemic immunity. Systemic immunity mediates the spread of antiviral signals from infection sites to distant uninfected tissues. In arthropods, RNA interference (RNAi) is responsible for antiviral defense. Here, we show that flies have a sophisticated systemic RNAi-based immunity mediated by macrophage-like haemocytes. Haemocytes take up dsRNA from infected cells and, through endogenous transposon reverse transcriptases, produce virus-derived complementary DNAs (vDNA). These vDNAs template de novo synthesis of secondary viral siRNAs (vsRNA), which are secreted in exosome-like vesicles. Strikingly, exosomes containing vsRNAs, purified from haemolymph of infected flies, confer passive protection against virus challenge in naive animals. Thus, similar to vertebrates, insects use immune cells to generate immunological memory in the form of stable vDNAs that generate systemic immunity, which is mediated by the vsRNA-containing exosomes.


Asunto(s)
Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Hemocitos/inmunología , Virus Sindbis/fisiología , Inmunidad Adaptativa , Animales , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Exosomas/metabolismo , Hemocitos/efectos de los fármacos , Hemocitos/virología , Memoria Inmunológica , Interferencia de ARN , ARN Viral/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Transcripción Reversa/efectos de los fármacos , Virus Sindbis/genética , Zidovudina/farmacología
20.
Mol Cell ; 84(15): 2918-2934.e11, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39025072

RESUMEN

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.


Asunto(s)
Proteínas Argonautas , Conformación de Ácido Nucleico , ARN Guía de Sistemas CRISPR-Cas , Complejo Silenciador Inducido por ARN , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/química , Humanos , Complejo Silenciador Inducido por ARN/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/química , Cinética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Interferencia de ARN , Secuencia de Bases , Células HEK293
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA