Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 83: 191-219, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905781

RESUMEN

Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.


Asunto(s)
Proteínas CLOCK/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Animales , Bovinos , Drosophila , Hongos/fisiología , Glicosilación , Humanos , Insectos/fisiología , Luz , Fosforilación , Fotoquímica/métodos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Rodopsina/fisiología , Opsinas de Bastones/fisiología , Transducción de Señal , Transcripción Genética
2.
PLoS Genet ; 17(6): e1009146, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34097697

RESUMEN

The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.


Asunto(s)
Linaje de la Célula/fisiología , Proteínas de Drosophila/fisiología , Proteínas del Ojo/fisiología , Ojo/citología , Proteínas de la Membrana/fisiología , Rodopsina/fisiología , Espectrina/fisiología , Animales , Citoesqueleto/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ojo/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Hum Mol Genet ; 29(6): 881-891, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31960909

RESUMEN

Rhodopsin is the G protein-coupled receptor in rod photoreceptor cells that initiates vision upon photon capture. The light receptor is normally locked in an inactive state in the dark by the covalently bound inverse agonist 11-cis retinal. Mutations can render the receptor active even in the absence of light. This constitutive activity can desensitize rod photoreceptor cells and lead to night blindness. A G90D mutation in rhodopsin causes the receptor to be constitutively active and leads to congenital stationary night blindness, which is generally thought to be devoid of retinal degeneration. The constitutively active species responsible for the night blindness phenotype is unclear. Moreover, the classification as a stationary disease devoid of retinal degeneration is also misleading. A transgenic mouse model for congenital stationary night blindness that expresses the G90D rhodopsin mutant was examined to better understand the origin of constitutive activity and the potential for retinal degeneration. Heterozygous mice for the G90D mutation did not exhibit retinal degeneration whereas homozygous mice exhibited progressive retinal degeneration. Only a modest reversal of retinal degeneration was observed when transducin signaling was eliminated genetically, indicating that some of the retinal degeneration occurred in a transducin-independent manner. Biochemical studies on purified rhodopsin from mice indicated that multiple species can potentially contribute to the constitutive activity causing night blindness.


Asunto(s)
Mutación , Ceguera Nocturna/patología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Rodopsina/fisiología , Transducina/fisiología , Animales , Heterocigoto , Homocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ceguera Nocturna/etiología , Degeneración Retiniana/etiología , Células Fotorreceptoras Retinianas Bastones/metabolismo
4.
J Neurosci ; 40(42): 8055-8069, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32948676

RESUMEN

Members of the arrestin superfamily have great propensity of self-association, but the physiological significance of this phenomenon is unclear. To determine the biological role of visual arrestin-1 oligomerization in rod photoreceptors, we expressed mutant arrestin-1 with severely impaired self-association in mouse rods and analyzed mice of both sexes. We show that the oligomerization-deficient mutant is capable of quenching rhodopsin signaling normally, as judged by electroretinography and single-cell recording. Like wild type, mutant arrestin-1 is largely excluded from the outer segments in the dark, proving that the normal intracellular localization is not due the size exclusion of arrestin-1 oligomers. In contrast to wild type, supraphysiological expression of the mutant causes shortening of the outer segments and photoreceptor death. Thus, oligomerization reduces the cytotoxicity of arrestin-1 monomer, ensuring long-term photoreceptor survival.SIGNIFICANCE STATEMENT Visual arrestin-1 forms dimers and tetramers. The biological role of its oligomerization is unclear. To test the role of arrestin-1 self-association, we expressed oligomerization-deficient mutant in arrestin-1 knock-out mice. The mutant quenches light-induced rhodopsin signaling like wild type, demonstrating that in vivo monomeric arrestin-1 is necessary and sufficient for this function. In rods, arrestin-1 moves from the inner segments and cell bodies in the dark to the outer segments in the light. Nonoligomerizing mutant undergoes the same translocation, demonstrating that the size of the oligomers is not the reason for arrestin-1 exclusion from the outer segments in the dark. High expression of oligomerization-deficient arrestin-1 resulted in rod death. Thus, oligomerization reduces the cytotoxicity of high levels of arrestin-1 monomer.


Asunto(s)
Arrestinas/metabolismo , Arrestinas/fisiología , Adaptación Ocular , Animales , Arrestinas/genética , Supervivencia Celular , Electrorretinografía , Femenino , Fototransducción , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación/genética , Retina/anatomía & histología , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/fisiología
5.
Proc Natl Acad Sci U S A ; 115(13): E3017-E3025, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29545273

RESUMEN

Network oscillations across and within brain areas are critical for learning and performance of memory tasks. While a large amount of work has focused on the generation of neural oscillations, their effect on neuronal populations' spiking activity and information encoding is less known. Here, we use computational modeling to demonstrate that a shift in resonance responses can interact with oscillating input to ensure that networks of neurons properly encode new information represented in external inputs to the weights of recurrent synaptic connections. Using a neuronal network model, we find that due to an input current-dependent shift in their resonance response, individual neurons in a network will arrange their phases of firing to represent varying strengths of their respective inputs. As networks encode information, neurons fire more synchronously, and this effect limits the extent to which further "learning" (in the form of changes in synaptic strength) can occur. We also demonstrate that sequential patterns of neuronal firing can be accurately stored in the network; these sequences are later reproduced without external input (in the context of subthreshold oscillations) in both the forward and reverse directions (as has been observed following learning in vivo). To test whether a similar mechanism could act in vivo, we show that periodic stimulation of hippocampal neurons coordinates network activity and functional connectivity in a frequency-dependent manner. We conclude that resonance with subthreshold oscillations provides a plausible network-level mechanism to accurately encode and retrieve information without overstrengthening connections between neurons.


Asunto(s)
Potenciales de Acción/fisiología , Aprendizaje/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Rodopsina/fisiología , Animales , Simulación por Computador , Canales Iónicos/fisiología , Ratones
6.
Artículo en Inglés | MEDLINE | ID: mdl-34126231

RESUMEN

It is not well understood how the spectral composition (wavelength) of daylight that varies considerably during the day and seasons affects photoperiodic responses in a seasonal species. Here, we investigated the molecular underpinnings of wavelength-dependent photoperiodic induction in migratory redheaded buntings transferred to 13 h long days in neutral (white), 460 nm (blue), 500 nm (green) or 620 nm (red) wavelength that were compared with one another, and to short day controls for indices of the migratory (body fattening and weight gain, and Zugunruhe) and reproductive (testicular maturation) responses. Buntings showed wavelength-dependent photoperiodic response, with delayed Zugunruhe and slower testis maturation under 620 nm red light. Post-mortem comparison of gene expressions further revealed wavelength-dependence of the photoperiodic molecular response. Whereas there were higher retinal expressions of opn2 (rhodopsin) and opn5 (neuropsin) genes in red daylight, and of rhodopsin-like opsin (rh2) gene in green daylight, the hypothalamic opn2 mRNA levels were higher in blue daylight. Similarly, we found in birds under blue daylight an increased hypothalamic expression of genes involved in the photoperiodic induction (thyroid stimulating hormone subunit beta, tshb; eye absent 3, eya3; deiodinase type 2, dio2) and associated neural responses such as the calcium signaling (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, atp2a2), dopamine biosynthesis (tyrosine hydroxylase, th) and neurogenesis (brain-derived neurotrophic factor, bdnf). These results demonstrate transcriptional changes in parallel to responses associated with migration and reproduction in buntings, and suggest a role of daylight spectrum in photoperiodic induction of the vernal response in obligate spring avian migrants.


Asunto(s)
Migración Animal , Luz , Fotoperiodo , Rodopsina/fisiología , Estaciones del Año , Pájaros Cantores/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Señalización del Calcio , Ritmo Circadiano/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipotálamo/metabolismo , India , Masculino , Opsinas , Fenotipo , Retina/metabolismo , Rodopsina/metabolismo , Testículo/crecimiento & desarrollo
7.
J Neurosci ; 39(2): 212-223, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30459230

RESUMEN

Bleaching adaptation in rod photoreceptors is mediated by apo-opsin, which activates phototransduction with effective activity 105- to 106-fold lower than that of photoactivated rhodopsin (meta II). However, the mechanism that produces such low opsin activity is unknown. To address this question, we sought to record single opsin responses in mouse rods. We used mutant mice lacking efficient calcium feedback to boosts rod responses and generated a small fraction of opsin by photobleaching ∼1% of rhodopsin. The bleach produced a dramatic increase in the frequency of discrete photoresponse-like events. This activity persisted for hours, was quenched by 11-cis-retinal, and was blocked by uncoupling opsin from phototransduction, all indicating opsin as its source. Opsin-driven discrete activity was also observed in rods containing non-activatable rhodopsin, ruling out transactivation of rhodopsin by opsin. We conclude that bleaching adaptation is mediated by opsin that exists in equilibrium between a predominant inactive and a rare meta II-like state.SIGNIFICANCE STATEMENT Electrophysiological analysis is used to show that the G-protein-coupled receptor opsin exists in equilibrium between a predominant inactive and a rare highly active state that mediates bleaching adaptation in photoreceptors.


Asunto(s)
Opsinas de Bastones/fisiología , Animales , Señalización del Calcio/genética , Femenino , Fototransducción/genética , Fototransducción/fisiología , Masculino , Ratones , Ratones Noqueados , Mutación , Fotoblanqueo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinaldehído/química , Rodopsina/química , Rodopsina/genética , Rodopsina/fisiología , Opsinas de Bastones/química , Opsinas de Bastones/genética , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32880702

RESUMEN

We have studied dark-adaptation at three levels in the eyes of the crustacean Mysis relicta over 2-3 weeks after exposing initially dark-adapted animals to strong white light: regeneration of 11-cis retinal through the retinoid cycle (by HPLC), restoration of native rhodopsin in photoreceptor membranes (by MSP), and recovery of eye photosensitivity (by ERG). We compare two model populations ("Sea", Sp, and "Lake", Lp) inhabiting, respectively, a low light and an extremely dark environment. 11-cis retinal reached 60-70% of the pre-exposure levels after 2 weeks in darkness in both populations. The only significant Lp/Sp difference in the retinoid cycle was that Lp had much higher levels of retinol, both basal and light-released. In Sp, rhodopsin restoration and eye photoresponse recovery parallelled 11-cis retinal regeneration. In Lp, however, even after 3 weeks only ca. 25% of the rhabdoms studied had incorporated new rhodopsin, and eye photosensitivity showed only incipient recovery from severe depression. The absorbance spectra of the majority of the Lp rhabdoms stayed constant around 490-500 nm, consistent with metarhodopsin II dominance. We conclude that sensitivity recovery of Sp eyes was rate-limited by the regeneration of 11-cis retinal, whilst that of Lp eyes was limited by inertia in photoreceptor membrane turnover.


Asunto(s)
Crustáceos/fisiología , Fotofobia/prevención & control , Retinoides/metabolismo , Animales , Adaptación a la Oscuridad , Lagos , Océanos y Mares , Regeneración , Rodopsina/fisiología
9.
Proc Natl Acad Sci U S A ; 114(13): E2608-E2615, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289214

RESUMEN

Vertebrate rhodopsin (Rh) contains 11-cis-retinal as a chromophore to convert light energy into visual signals. On absorption of light, 11-cis-retinal is isomerized to all-trans-retinal, constituting a one-way reaction that activates transducin (Gt) followed by chromophore release. Here we report that bovine Rh, regenerated instead with a six-carbon-ring retinal chromophore featuring a C11=C12 double bond locked in its cis conformation (Rh6mr), employs an atypical isomerization mechanism by converting 11-cis to an 11,13-dicis configuration for prolonged Gt activation. Time-dependent UV-vis spectroscopy, HPLC, and molecular mechanics analyses revealed an atypical thermal reisomerization of the 11,13-dicis to the 11-cis configuration on a slow timescale, which enables Rh6mr to function in a photocyclic manner similar to that of microbial Rhs. With this photocyclic behavior, Rh6mr repeatedly recruits and activates Gt in response to light stimuli, making it an excellent candidate for optogenetic tools based on retinal analog-bound vertebrate Rhs. Overall, these comprehensive structure-function studies unveil a unique photocyclic mechanism of Rh activation by an 11-cis-to-11,13-dicis isomerization.


Asunto(s)
Rodopsina/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Isomerismo , Procesos Fotoquímicos , Rodopsina/fisiología , Rodopsina/efectos de la radiación
10.
Mol Biol Evol ; 35(10): 2422-2434, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010964

RESUMEN

Bats are excellent models for studying the molecular basis of sensory adaptation. In Chiroptera, a sensory trade-off has been proposed between the visual and auditory systems, though the extent of this association has yet to be fully examined. To investigate whether variation in visual performance is associated with echolocation, we experimentally assayed the dim-light visual pigment rhodopsin from bat species with differing echolocation abilities. While spectral tuning properties were similar among bats, we found that the rate of decay of their light-activated state was significantly slower in a nonecholocating bat relative to species that use distinct echolocation strategies, consistent with a sensory trade-off hypothesis. We also found that these rates of decay were remarkably slower compared with those of other mammals, likely indicating an adaptation to dim light. To examine whether functional changes in rhodopsin are associated with shifts in selection intensity upon bat Rh1 sequences, we implemented selection analyses using codon-based likelihood clade models. While no shifts in selection were identified in response to diverse echolocation abilities of bats, we detected a significant increase in the intensity of evolutionary constraint accompanying the diversification of Chiroptera. Taken together, this suggests that substitutions that modulate the stability of the light-activated rhodopsin state were likely maintained through intensified constraint after bats diversified, being finely tuned in response to novel sensory specializations. Our study demonstrates the power of combining experimental and computational approaches for investigating functional mechanisms underlying the evolution of complex sensory adaptations.


Asunto(s)
Adaptación Biológica , Quirópteros/fisiología , Ecolocación , Evolución Molecular , Rodopsina/fisiología , Animales , Adaptación a la Oscuridad , Cinética , Visión Ocular
11.
Exp Eye Res ; 186: 107719, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291592

RESUMEN

Retinal degenerations are a major cause of blindness in human patients. The identification of endogenous mechanisms involved in neurodegeneration or neuroprotection helps to understand the response of the retina to stress and provides essential information not only for basic retinal physiology but also for defining molecular targets for neuroprotective strategies. Here we used excessive light exposure as a model system to study mechanisms of photoreceptor degeneration in mice. Using one wild type and four genetically modified mouse strains, we demonstrate that light exposure resulted not only in the degeneration of rods but also in an early but transient repression of several cone-specific genes, in a reversible hyperreflectivity of the outer retina including the outer plexiform layer, and in the loss of horizontal cells. The effects on cones, horizontal cells and the inner retina depended on light absorption by rhodopsin and, at least partially, on leukemia inhibitory factor. This demonstrates the existence of intercellular communication routes that transduce rod stress to other cells, likely to provide support for photoreceptors and increase cell survival in the injured retina.


Asunto(s)
Luz/efectos adversos , Células Fotorreceptoras Retinianas Conos/fisiología , Degeneración Retiniana/etiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Rodopsina/fisiología , Estrés Fisiológico/fisiología , Animales , Electrorretinografía , Ratones , Degeneración Retiniana/fisiopatología
12.
Vis Neurosci ; 36: E011, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31718726

RESUMEN

The spectral tuning properties of the whale shark (Rhincodon typus) rod (rhodopsin or Rh1) and long-wavelength-sensitive (LWS) cone visual pigments were examined to determine whether these retinal pigments have adapted to the broadband light spectrum available for surface foraging or to the narrowband blue-shifted light spectrum available at depth. Recently published whale shark genomes have identified orthologous genes for both the whale shark Rh1 and LWS cone opsins suggesting a duplex retina. Here, the whale shark Rh1 and LWS cone opsin sequences were examined to identify amino acid residues critical for spectral tuning. Surprisingly, the predicted absorbance maximum (λmax) for both the whale shark Rh1 and LWS visual pigments is near 500 nm. Although Rh1 λmax values near 500 nm are typical of terrestrial vertebrates, as well as surface foraging fish, it is uncommon for a vertebrate LWS cone pigment to be so greatly blue-shifted. We propose that the spectral tuning properties of both the whale shark Rh1 and LWS cone pigments are most likely adaptations to the broadband light spectrum available at the surface. Whale shark melanopsin (Opn4) deactivation kinetics was examined to better understand the underlying molecular mechanisms of the pupillary light reflex. Results show that the deactivation rate of whale shark Opn4 is similar to the Opn4 deactivation rate from vertebrates possessing duplex retinae and is significantly faster than the Opn4 deactivation rate from an aquatic rod monochromat lacking functional cone photoreceptors. The rapid deactivation rate of whale shark Opn4 is consistent with a functional cone class and would provide the animal with an exponential increase in the number of photons required for photoreceptor signaling when transitioning from photopic to scotopic light conditions, as is the case when diving.


Asunto(s)
Opsinas de los Conos/fisiología , Fenómenos Ópticos , Células Fotorreceptoras Retinianas Conos/fisiología , Rodopsina/fisiología , Tiburones/fisiología , Animales
13.
Proc Natl Acad Sci U S A ; 113(14): E1993-2000, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27001860

RESUMEN

A recently discovered family of natural anion channelrhodopsins (ACRs) have the highest conductance among channelrhodopsins and exhibit exclusive anion selectivity, which make them efficient inhibitory tools for optogenetics. We report analysis of flash-induced absorption changes in purified wild-type and mutant ACRs, and of photocurrents they generate in HEK293 cells. Contrary to cation channelrhodopsins (CCRs), the ion conducting state of ACRs develops in an L-like intermediate that precedes the deprotonation of the retinylidene Schiff base (i.e., formation of an M intermediate). Channel closing involves two mechanisms leading to depletion of the conducting L-like state: (i) Fast closing is caused by a reversible L⇔M conversion. Glu-68 in Guillardia theta ACR1 plays an important role in this transition, likely serving as a counterion and proton acceptor at least at high and neutral pH. Incomplete suppression of M formation in the GtACR1_E68Q mutant indicates the existence of an alternative proton acceptor. (ii) Slow closing of the channel parallels irreversible depletion of the M-like and, hence, L-like state. Mutation of Cys-102 that strongly affected slow channel closing slowed the photocycle to the same extent. The L and M intermediates were in equilibrium in C102A as in the WT. In the position of Glu-123 in channelrhodopsin-2, ACRs contain a noncarboxylate residue, the mutation of which to Glu produced early Schiff base proton transfer and strongly inhibited channel activity. The data reveal fundamental differences between natural ACR and CCR conductance mechanisms and their underlying photochemistry, further confirming that these proteins form distinct families of rhodopsin channels.


Asunto(s)
Activación del Canal Iónico , Procesos Fotoquímicos , Rodopsina/fisiología , Aniones
14.
J Neurosci ; 37(45): 10904-10916, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28972128

RESUMEN

Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population.


Asunto(s)
Miembro Anterior/inervación , Miembro Anterior/fisiología , Lateralidad Funcional/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Neuronas/fisiología , Tractos Piramidales/fisiología , Telencéfalo/fisiología , Animales , Conducta Animal/fisiología , Condicionamiento Operante , Electromiografía , Masculino , Corteza Motora/citología , Optogenética , Tractos Piramidales/citología , Ratas , Rodopsina/biosíntesis , Rodopsina/fisiología , Telencéfalo/citología
15.
J Biol Chem ; 292(52): 21407-21416, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29109151

RESUMEN

Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.


Asunto(s)
Rodopsina/metabolismo , Vitamina A/fisiología , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Ratones , Ratones Noqueados , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Retinaldehído/metabolismo , Retinoides/metabolismo , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/metabolismo , Proteínas Celulares de Unión al Retinol/metabolismo , Rodopsina/genética , Rodopsina/fisiología , Opsinas de Bastones/metabolismo , Vitamina A/metabolismo
16.
Mol Biol Evol ; 33(12): 3194-3204, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27660296

RESUMEN

Diapause is an adaptation that allows organisms to survive harsh environmental conditions. In species occurring over broad habitat ranges, both the timing and the intensity of diapause induction can vary across populations, revealing patterns of local adaptation. Understanding the genetic architecture of this fitness-related trait would help clarify how populations adapt to their local environments. In the cyclical parthenogenetic crustacean Daphnia magna, diapause induction is a phenotypic plastic life history trait linked to sexual reproduction, as asexual females have the ability to switch to sexual reproduction and produce resting stages, their sole strategy for surviving habitat deterioration. We have previously shown that the induction of resting stage production correlates with changes in photoperiod that indicate the imminence of habitat deterioration and have identified a Quantitative Trait Locus (QTL) responsible for some of the variation in the induction of resting stages. Here, new data allows us to anchor the QTL to a large scaffold and then, using a combination of a new mapping panel, targeted association mapping and selection analysis in natural populations, to identify candidate genes within the QTL. Our results show that variation in a rhodopsin photoreceptor gene plays a significant role in the variation observed in resting stage induction. This finding provides a mechanistic explanation for the link between diapause and day-length perception that has been suggested in diverse arthropod taxa.


Asunto(s)
Daphnia/fisiología , Células Fotorreceptoras/fisiología , Rodopsina/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Mapeo Cromosómico/métodos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Daphnia/genética , Daphnia/metabolismo , Ecosistema , Femenino , Variación Genética , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , Fenotipo , Fotoperiodo , Células Fotorreceptoras/metabolismo , Sitios de Carácter Cuantitativo , Reproducción/genética , Rodopsina/genética , Rodopsina/metabolismo , Estaciones del Año
17.
Nat Methods ; 11(8): 825-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952910

RESUMEN

All-optical electrophysiology-spatially resolved simultaneous optical perturbation and measurement of membrane voltage-would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk-free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.


Asunto(s)
Mamíferos/fisiología , Neuronas/fisiología , Rodopsina/fisiología , Animales , Evolución Molecular Dirigida , Proteínas Recombinantes/metabolismo , Transmisión Sináptica
18.
Mol Vis ; 23: 718-739, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062223

RESUMEN

PURPOSE: Light-induced photoreceptor cell degeneration and disease progression in age-related macular degeneration (AMD) involve oxidative stress and visual cell loss, which can be prevented, or slowed, by antioxidants. Our goal was to test the protective efficacy of a traditional Age-related Eye Disease Study antioxidant formulation (AREDS) and AREDS combined with non-traditional antioxidants in a preclinical animal model of photooxidative retinal damage. METHODS: Male Sprague-Dawley rats were reared in a low-intensity (20 lux) or high-intensity (200 lux) cyclic light environment for 6 weeks. Some animals received a daily dietary supplement consisting of a small cracker infused with an AREDS antioxidant mineral mixture, AREDS antioxidants minus zinc, or zinc oxide alone. Other rats received AREDS combined with a detergent extract of the common herb rosemary, AREDS plus carnosic acid, zinc oxide plus rosemary, or rosemary alone. Antioxidant efficacy was determined by measuring retinal DNA levels 2 weeks after 6 h of intense exposure to white light (9,000 lux). Western blotting was used to determine visual cell opsin and arrestin levels following intense light treatment. Rhodopsin regeneration was determined after 1 h of exposure to light. Gene array analysis was used to determine changes in the expression of retinal genes resulting from light rearing environment or from antioxidant supplementation. RESULTS: Chronic high-intensity cyclic light rearing resulted in lower levels of rod and cone opsins, retinal S-antigen (S-ag), and medium wavelength cone arrestin (mCAR) than found for rats maintained in low cyclic light. However, as determined by retinal DNA, and by residual opsin and arrestin levels, 2 weeks after acute photooxidative damage, visual cell loss was greater in rats reared in low cyclic light. Retinal damage decreased with AREDS plus rosemary, or with zinc oxide plus rosemary whereas AREDS alone and zinc oxide alone (at their daily recommended levels) were both ineffective. One week of supplemental AREDS plus carnosic acid resulted in higher levels of rod and cone cell proteins, and higher levels of retinal DNA than for AREDS alone. Rhodopsin regeneration was unaffected by the rosemary treatment. Retinal gene array analysis showed reduced expression of medium- wavelength opsin 1 and arrestin C in the high-light reared rats versus the low-light rats. The transition of rats from low cyclic light to a high cyclic light environment resulted in the differential expression of 280 gene markers, enriched for genes related to inflammation, apoptosis, cytokine, innate immune response, and receptors. Rosemary, zinc oxide plus rosemary, and AREDS plus rosemary suppressed 131, 241, and 266 of these genes (respectively) in high-light versus low-light animals and induced a small subset of changes in gene expression that were independent of light rearing conditions. CONCLUSIONS: Long-term environmental light intensity is a major determinant of retinal gene and protein expression, and of visual cell survival following acute photooxidative insult. Rats preconditioned by high-light rearing exhibit lower levels of cone opsin mRNA and protein, and lower mCAR protein, than low-light reared animals, but greater retention of retinal DNA and proteins following photooxidative damage. Rosemary enhanced the protective efficacy of AREDS and led to the greatest effect on the retinal genome in animals reared in high environmental light. Chronic administration of rosemary antioxidants may be a useful adjunct to the therapeutic benefit of AREDS in slowing disease progression in AMD.


Asunto(s)
Antioxidantes/uso terapéutico , Suplementos Dietéticos , Luz/efectos adversos , Traumatismos Experimentales por Radiación/prevención & control , Retina/efectos de la radiación , Degeneración Retiniana/prevención & control , Animales , Western Blotting , Supervivencia Celular , Evaluación Preclínica de Medicamentos , Proteínas del Ojo/metabolismo , Masculino , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Ratas , Ratas Sprague-Dawley , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Rodopsina/fisiología
19.
J Neurosci ; 35(9): 3990-4004, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740527

RESUMEN

In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.


Asunto(s)
Reacción de Prevención/fisiología , Drosophila melanogaster/fisiología , Gusto/fisiología , Animales , Conducta Animal/fisiología , Extremidades/inervación , Extremidades/fisiología , Femenino , Optogenética , Rodopsina/fisiología , Sensilos/fisiología , Células Receptoras Sensoriales/fisiología , Estimulación Química
20.
Proc Natl Acad Sci U S A ; 110(38): 15455-60, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24006366

RESUMEN

The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs' responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness.


Asunto(s)
Bombyx/fisiología , Interneuronas/fisiología , Neuronas Receptoras Olfatorias/fisiología , Atractivos Sexuales/metabolismo , Olfato/fisiología , Animales , Animales Modificados Genéticamente , Cartilla de ADN/genética , Vectores Genéticos , Luz , Masculino , Neuronas Receptoras Olfatorias/metabolismo , Optogenética , Rodopsina/genética , Rodopsina/fisiología , Umbral Sensorial/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA