Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 631(8022): 899-904, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838737

RESUMEN

Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.


Asunto(s)
Sinaptofisina , ATPasas de Translocación de Protón Vacuolares , Animales , Masculino , Ratones , Microscopía por Crioelectrón , Ratones Noqueados , Modelos Moleculares , Neurotransmisores/metabolismo , Unión Proteica , Convulsiones/genética , Convulsiones/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/química , Sinaptofisina/deficiencia , Sinaptofisina/metabolismo , Sinaptofisina/ultraestructura , ATPasas de Translocación de Protón Vacuolares/análisis , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Tomografía con Microscopio Electrónico
2.
Proc Natl Acad Sci U S A ; 121(29): e2409605121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985768

RESUMEN

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.


Asunto(s)
Vesículas Sinápticas , Sinaptogirinas , Sinaptofisina , Animales , Sinaptofisina/metabolismo , Sinaptofisina/genética , Vesículas Sinápticas/metabolismo , Ratones , Sinaptogirinas/metabolismo , Sinaptogirinas/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Ratones Noqueados , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratas , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética
3.
J Cell Biochem ; 125(3): e30529, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308620

RESUMEN

Sept8 is a vesicle associated protein and there are two typical transcriptional variants (Sept8-204 and Sept8-201) expressed in mice brain. Interestingly, the coexpression of Sept8-204/Sept5 induces the formation of small sized vesicle-like structure, while that of the Sept8-201/Sept5 produces large puncta. Sept8 is previously shown to be palmitoylated. Here it was further revealed that protein palmitoylation is required for Sept8-204/Sept5 to maintain small sized vesicle-like structure and colocalize with synaptophysin, since either the expression of nonpalmitoylated Sept8-204 mutant (Sept8-204-3CA) or inhibiting Sept8-204 palmitoylation by 2-BP with Sept5 produces large puncta, which barely colocalizes with synaptophysin (SYP). Moreover, it was shown that the dynamic palmitoylation of Sept8-204 is controlled by ZDHHC17 and PPT1, loss of ZDHHC17 decreases Sept8-204 palmitoylation and induces large puncta, while loss of PPT1 increases Sept8-204 palmitoylation and induces small sized vesicle-like structure. Together, these findings suggest that palmitoylation is essential for the maintenance of the small sized vesicle-like structure for Sept8-204/Sept5, and may hint their important roles in synaptic functions.


Asunto(s)
Lipoilación , Septinas , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Septinas/genética , Septinas/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
4.
IUBMB Life ; 76(8): 548-562, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38390757

RESUMEN

Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.


Asunto(s)
Restricción Calórica , Plasticidad Neuronal , Animales , Masculino , Ratas , Factores de Edad , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Dieta , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulación de la Expresión Génica/fisiología , Plasticidad Neuronal/fisiología , Ratas Wistar , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
5.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347462

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Asunto(s)
Glioblastoma , Priones , Humanos , Expresión Génica , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/genética , Priones/metabolismo , Proteínas de Unión al GTP rab/genética , Sinaptofisina/metabolismo
6.
Exp Brain Res ; 242(7): 1709-1719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806710

RESUMEN

Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.


Asunto(s)
Cognición , Hipocampo , Ratones Endogámicos C57BL , Neurogénesis , Plasticidad Neuronal , Condicionamiento Físico Animal , Sinaptofisina , Animales , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Hipocampo/fisiología , Condicionamiento Físico Animal/fisiología , Ratones , Masculino , Cognición/fisiología , Sinaptofisina/metabolismo , Aprendizaje por Laberinto/fisiología , Homólogo 4 de la Proteína Discs Large/metabolismo
7.
Biometals ; 37(4): 819-838, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38233603

RESUMEN

Aluminum is a potent neurotoxin, responsible for memory impairment and cognitive dysfunction. The neurotoxic effect of aluminum on cognitive impairment is well documented, however, exposure to aluminum in a time-dependent manner and post-exposure self-recovery still needs to be elaborated. This research aimed to (1) study the time-dependent effect of aluminum exposure by administering a total dose of 5850 mg/kg of Al over two different time periods: 30 and 45 days (130 and 195 mg/kg of AlCl3 respectively), and (2) study 20 days post-exposure self-recovery effect in both aluminum-exposed groups by giving distilled water. Cognitive abilities were investigated through Morris water maze test and hole board test and compared in both exposure and recovery groups. Oxidative stress markers and neurotransmitter levels were measured for both exposure and recovery groups. To understand the mechanism of aluminum exposure and recovery, immunohistochemical analysis of synaptophysin (Syp) and glial fibrillary acidic protein (GFAP) was performed. Results showed cognitive dysfunction, oxidative stress-induced damage, reduced neurotransmitter levels, decreased immunoreactivity of Syp, and increased GFAP. However, these parameters showed a larger improvement in the recovery group where rats were given aluminum for 30 days period in comparison to recovery group followed by 45 days of aluminum exposure. These results suggest that restoration of cognitive ability is affected by the duration of aluminum exposure. The study findings provide us with insight into the adverse effects of aluminum exposure and can be utilized to guide future preventive and therapeutic strategies against aluminum neurotoxicity.


Asunto(s)
Aluminio , Neurotransmisores , Estrés Oxidativo , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Aluminio/toxicidad , Neurotransmisores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Memoria Espacial/efectos de los fármacos , Sinaptofisina/metabolismo , Factores de Tiempo , Proteína Ácida Fibrilar de la Glía/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Cloruro de Aluminio
8.
Acta Pharmacol Sin ; 45(7): 1406-1424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38589687

RESUMEN

Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Indicán , Factor de Necrosis Tumoral alfa , Animales , Lesión Renal Aguda/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Ratones , Masculino , Células RAW 264.7 , Ratas , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ratas Sprague-Dawley , Sinaptofisina/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Uremia/metabolismo , Uremia/complicaciones , Línea Celular Tumoral
9.
J Integr Neurosci ; 23(4): 82, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38682225

RESUMEN

BACKGROUND: Comorbid chronic neuropathic pain (NPP) and anxio-depressive disorders (ADD) have become a serious global public-health problem. The SLIT and NTRK-like 1 (SLITRK1) protein is important for synaptic remodeling and is highly expressed in the amygdala, an important brain region involved in various emotional behaviors. We examined whether SLITRK1 protein in the amygdala participates in NPP and comorbid ADD. METHODS: A chronic NPP mouse model was constructed by L5 spinal nerve ligation; changes in chronic pain and ADD-like behaviors were measured in behavioral tests. Changes in SLITRK1 protein and excitatory synaptic functional proteins in the amygdala were measured by immunofluorescence and Western blot. Adeno-associated virus was transfected into excitatory synaptic neurons in the amygdala to up-regulate the expression of SLITRK1. RESULTS: Chronic NPP-related ADD-like behavior was successfully produced in mice by L5 ligation. We found that chronic NPP and related ADD decreased amygdalar expression of SLITRK1 and proteins important for excitatory synaptic function, including Homer1, postsynaptic density protein 95 (PSD95), and synaptophysin. Virally-mediated SLITRK1 overexpression in the amygdala produced a significant easing of chronic NPP and ADD, and restored the expression levels of Homer1, PSD95, and synaptophysin. CONCLUSION: Our findings indicated that SLITRK1 in the amygdala plays an important role in chronic pain and related ADD, and may prove to be a potential therapeutic target for chronic NPP-ADD comorbidity.


Asunto(s)
Amígdala del Cerebelo , Conducta Animal , Dolor Crónico , Homólogo 4 de la Proteína Discs Large , Proteínas del Tejido Nervioso , Neuralgia , Animales , Masculino , Ratones , Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Ansiedad/fisiopatología , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/fisiopatología , Conducta Animal/fisiología , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Depresión/metabolismo , Depresión/etiología , Depresión/fisiopatología , Trastorno Depresivo/metabolismo , Trastorno Depresivo/fisiopatología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Sinaptofisina/metabolismo
10.
Ann Diagn Pathol ; 69: 152250, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38142627

RESUMEN

Appendiceal neuroendocrine neoplasms (NENs) can present with various growth patterns including the traditional triad of histologic patterns-insular, trabecular and tubular. A small cluster pattern was also found in this study and the literature on this specific morphology is limited. In this study, we conducted a comprehensive review of appendiceal NENs from our institution over a ten-year period. Clinical and demographic data were obtained from medical records. Immunohistochemical stains were performed with antibodies specific for synaptophysin, chromogranin, INSM1, CD56, serotonin and peptide YY. The small cluster pattern was found in 29.4 % of all cases evaluated. The tumor cells in these cases were predominantly located at the distal tip of the appendix, associated with fibrous obliteration. These tumors were smaller in size and tended towards less advanced tumor stage, with reduced incidence of lymphovascular and/or perineural invasion. Chromogranin expression was identified in 76 % of these cases. There is a heterogeneous hormone profile with 46.7 % serotonin and 33.3 % peptide YY. In conclusion, the small cluster pattern NENs present with unique histological features and hormone expression profile. Among the various neuroendocrine markers, INSM1 showed superior diagnostic performance, with high sensitivity and minimal non-specific staining.


Asunto(s)
Neoplasias del Apéndice , Carcinoma Neuroendocrino , Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendocrinos/patología , Biomarcadores de Tumor/metabolismo , Cromograninas , Péptido YY , Serotonina , Proteínas Represoras/metabolismo , Sensibilidad y Especificidad , Sinaptofisina/metabolismo , Neoplasias del Apéndice/diagnóstico , Carcinoma Neuroendocrino/patología
11.
Ann Diagn Pathol ; 71: 152304, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38614035

RESUMEN

INTRODUCTION: Differentiating pancreatic serous cystadenoma (SCA) from well-differentiated neuroendocrine tumors (WDNETs) based on histomorphology is critical yet challenging, particularly in small biopsy samples. Our study aimed to examine the expression profile of INSM1 in cytologic and surgical resection specimens from pancreatic SCA to evaluate its potential as a discriminative marker against pancreatic WDNET. METHODS: We characterized INSM1 immunohistochemistry in 34 patients with pancreatic SCA, comprising 23 surgical resections and 11 cytology specimens. As a control, we used 28 cytology specimens from pancreatic WDNET. Clinical information was retrieved through a review of electronic medical records. RESULTS: All 11 pancreatic SCA cytology specimens and 15 of 23 pancreatic SCA surgical resections exhibited absent INSM1 immunostaining. Each of the remaining eight surgical resection specimens demonstrated 1 % immunoreactivity. In contrast, 27 out of 28 (96 %) pancreatic WDNET cytology specimens were positive for INSM1 immunostaining, with a median immunoreactivity of 90 % and a range of 30-90 %. Overall, INSM1 immunostains perform similarly to chromogranin and synaptophysin in pancreatic SCA. CONCLUSIONS: The results indicate that INSM1 immunohistochemistry staining may serve as a useful neuroendocrine marker to differentiate pancreatic SCA from pancreatic WDNET in clinical practice. To our knowledge, this represents the first large-scale study to evaluate INSM1 immunostaining in surgical and cytology specimens from pancreatic SCA.


Asunto(s)
Biomarcadores de Tumor , Cistadenoma Seroso , Inmunohistoquímica , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Proteínas Represoras , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/cirugía , Femenino , Proteínas Represoras/metabolismo , Persona de Mediana Edad , Masculino , Diagnóstico Diferencial , Anciano , Cistadenoma Seroso/diagnóstico , Cistadenoma Seroso/patología , Cistadenoma Seroso/metabolismo , Inmunohistoquímica/métodos , Adulto , Anciano de 80 o más Años , Sinaptofisina/metabolismo , Citología
12.
Acta Neuropathol Commun ; 12(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173031

RESUMEN

Regional differences in synaptic degeneration may underlie differences in clinical presentation and neuropathological disease progression in Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Here, we mapped and quantified synaptic degeneration in cortical brain regions in PD, PD with dementia (PDD) and DLB, and assessed whether regional differences in synaptic loss are linked to axonal degeneration and neuropathological burden. We included a total of 47 brain donors, 9 PD, 12 PDD, 6 DLB and 20 non-neurological controls. Synaptophysin+ and SV2A+ puncta were quantified in eight cortical regions using a high throughput microscopy approach. Neurofilament light chain (NfL) immunoreactivity, Lewy body (LB) density, phosphorylated-tau and amyloid-ß load were also quantified. Group differences in synaptic density, and associations with neuropathological markers and Clinical Dementia Rating (CDR) scores, were investigated using linear mixed models. We found significantly decreased synaptophysin and SV2A densities in the cortex of PD, PDD and DLB cases compared to controls. Specifically, synaptic density was decreased in cortical regions affected at Braak α-synuclein stage 5 in PD (middle temporal gyrus, anterior cingulate and insula), and was additionally decreased in cortical regions affected at Braak α-synuclein stage 4 in PDD and DLB compared to controls (entorhinal cortex, parahippocampal gyrus and fusiform gyrus). Synaptic loss associated with higher NfL immunoreactivity and LB density. Global synaptophysin loss associated with longer disease duration and higher CDR scores. Synaptic neurodegeneration occurred in temporal, cingulate and insular cortices in PD, as well as in parahippocampal regions in PDD and DLB. In addition, synaptic loss was linked to axonal damage and severe α-synuclein burden. These results, together with the association between synaptic loss and disease progression and cognitive impairment, indicate that regional synaptic loss may underlie clinical differences between PD and PDD/DLB. Our results might provide useful information for the interpretation of synaptic biomarkers in vivo.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína , Enfermedad por Cuerpos de Lewy/patología , Cuerpos de Lewy/patología , Sinaptofisina , Progresión de la Enfermedad
13.
Sci Rep ; 14(1): 633, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182623

RESUMEN

Synaptophysin is expressed on fibrogenic hepatic myofibroblasts. C1-3 is a single chain human antibody (scAb) that binds specifically to synaptophysin on hepatic myofibroblasts, providing a targeting vector for novel in vivo imaging agents of chronic liver disease. C1-3 and a negative control scAb, CSBD9, were radiolabelled with zirconium-89 via desferrioxamine chelation to enable non-invasive molecular imaging with positron emission tomography (PET). DFO-scAb conjugates were characterised by gel electrophoresis (SDS-PAGE) and MALDI-TOF spectrometry, and 89Zr-labelled with high radiolabelling efficiency (99%). [89Zr]Zr-DFO-C1-3 exhibited high in vitro stability (> 99%) in mouse and human sera over 3 days at 25 and 37 °C. Activated hepatic myofibroblasts incubated with [89Zr]Zr-DFO-C1-3 displayed significantly higher internalised activity (59.46%, P = 0.001) compared to the [89Zr]Zr-DFO-CSBD9 control, indicating synaptophysin-mediated uptake and high binding specificity of [89Zr]Zr-DFO-C1-3. Mice with CCl4-induced acute liver damage exhibited significantly higher liver uptake of [89Zr]Zr-DFO-C1-3, compared to controls, confirmed by both Cerenkov imaging and ex vivo gamma counting (4.41 ± 0.19%ID/g, P < 0.0001). CCl4-induced liver damage and the number of hepatic myofibroblasts was confirmed by αSMA staining of liver sections. These findings indicate that [89Zr]Zr-DFO-C1-3 has promising utility as a PET imaging agent for non-invasive detection of hepatic myofibroblasts following acute liver injury.


Asunto(s)
Miofibroblastos , Tomografía Computarizada por Rayos X , Humanos , Animales , Ratones , Sinaptofisina , Hígado/diagnóstico por imagen , Inmunoglobulinas
14.
Invest Ophthalmol Vis Sci ; 65(3): 1, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441891

RESUMEN

Purpose: To determine whether neurotrophic factors and innervation in extraocular muscles (EOMs) were altered in different types of concomitant esotropia, and to explore the possible association between neurotrophic factors and innervation of EOMs in humans. Methods: Patients with concomitant esotropia who required strabismus surgery were recruited from January to December 2022. Lateral rectus EOMs were obtained from patients, and controls were obtained from deceased organ donors. Immunofluorescence (IF) was performed to detect innervation of EOMs (neurofilament and synaptophysin), and immunohistochemistry (IHC) was used to detect the neurotrophic factors insulin-like growth factor-1 (IGF-1), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 (NT-3). The positive IHC results were further verified using western blotting (WB). One-way ANOVA followed by a Dunnett's multiple comparison post hoc test was used for continuous variables and the χ2 test for categorical variables. Spearman correlation analysis was used for the correlation analysis. Results: We collected lateral rectus EOM samples from acute and chronic types of concomitant esotropia and controls. Consistent with IHC, WB showed that IGF-1 was significantly increased in patients with acute acquired comitant esotropia or essential infantile esotropia compared with controls. In IF, synaptophysins were significantly increased only in acute acquired comitant esotropia compared with controls. Furthermore, Spearman correlation analysis showed that the correlation between IGF-1 and synaptophysin was borderline (P = 0.057) for patients with acute acquired comitant esotropia. Conclusions: Our study highlights the role of IGF-1 and altered innervation of EOMs in acute acquired comitant esotropia, suggesting that an effect of increased IGF-1 on nerve innervation may temporarily cause a compensatory increase in the strength of lateral rectus muscles.


Asunto(s)
Esotropía , Factor I del Crecimiento Similar a la Insulina , Humanos , Sinaptofisina , Esotropía/cirugía , Músculos Oculomotores/cirugía , Análisis de Varianza
15.
Am J Surg Pathol ; 48(5): 562-569, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407279

RESUMEN

Primary pulmonary myxoid sarcoma (PPMS) and thoracic angiomatoid fibrous histiocytoma (AFH) are rare neoplasms with EWSR1 fusions and overlapping morphology. Both tumor types often show epithelial membrane antigen expression, but AFH characteristically co-expresses desmin. We encountered a case of PPMS with the unexpected finding of patchy, strong anaplastic lymphoma kinase (ALK) (previously reported in AFH) and synaptophysin expression. We evaluated a cohort of PPMS and thoracic AFH with systematic morphologic comparison and surveyed for aberrant expression of ALK and synaptophysin. Medical records and slides were reviewed for 16 molecularly confirmed cases of PPMS (n=5) and thoracic AFH (n=11). Each case was scored for morphologic characteristics typical of PPMS and/or AFH. ALK, synaptophysin, chromogranin, desmin, and epithelial membrane antigen immunostains were performed on cases with available tissue. AFH and PPMS cases showed similar age at presentation and long-term tumor behavior. Almost all cases of PPMS and AFH had a fibrous pseudocapsule and lymphoid rim. All PPMS had myxoid stroma and reticular growth pattern, but these features were also present in a subset of AFH. Synaptophysin expression was present in 6 of 11 AFH and 1 of 5 PPMS; all tested cases were negative for chromogranin (n=15). One case of AFH and 1 case of PPMS showed focally strong coexpression of synaptophysin and ALK. AFH and PPMS show considerable clinicopathologic overlap. When supportive, the immunohistochemical findings described may aid in diagnosis before molecular confirmation. PPMS and AFH may be morphologic variants of the same clinicopathologic entity, which can show more immunophenotypic variability than previously reported.


Asunto(s)
Histiocitoma Fibroso Benigno , Histiocitoma Fibroso Maligno , Humanos , Sinaptofisina , Mucina-1 , Desmina , Cromograninas , Histiocitoma Fibroso Maligno/genética , Histiocitoma Fibroso Maligno/cirugía , Histiocitoma Fibroso Maligno/diagnóstico , Proteínas Tirosina Quinasas Receptoras
16.
Int J Surg Pathol ; 32(6): 1082-1088, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38192158

RESUMEN

Objective: Our purpose was to investigate the clinicopathological diagnostic value of immunohistochemical antibody for insulinoma-associated protein 1 (INSM1) in biopsy specimens of SCLC. Methods: Biopsy specimens of SCLC diagnosed at the pathology department of Tangshan Gongren Hospital from January 2022 to June 2023 were selected. INSM1 expression was detected and compared with conventional neuroendocrine markers synaptophysin (SYP), chromogranin A (CHGA), and CD56 regarding expression sensitivity and specificity. Results: The sensitivity of INSM1 expression was significantly higher than that of CHGA (95% vs 50%, P = .000), but there was no statistically significant difference in the specificity of INSM1, SYP, CHGA, and CD56 expression (100% vs 94% vs 98% vs 92%, respectively, P = .241, 1.000, .126). Conclusions: INSM1 antibody shows high sensitivity and specificity in the expression of SCLC and serves as a reliable immunohistochemical marker in the clinicopathological diagnosis of SCLC in biopsy specimens.


Asunto(s)
Biomarcadores de Tumor , Inmunohistoquímica , Neoplasias Pulmonares , Proteínas Represoras , Sensibilidad y Especificidad , Carcinoma Pulmonar de Células Pequeñas , Sinaptofisina , Humanos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Proteínas Represoras/metabolismo , Proteínas Represoras/análisis , Anciano , Sinaptofisina/metabolismo , Sinaptofisina/análisis , Biopsia , Antígeno CD56/metabolismo , Antígeno CD56/análisis , Cromogranina A/metabolismo , Cromogranina A/análisis , Adulto , Anciano de 80 o más Años
17.
J Cancer Res Ther ; 20(1): 261-267, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554331

RESUMEN

BACKGROUND AND OBJECTIVE: Radiation therapy is a routine clinical practice that has been used for a long time in the treatment of cancer patients. The most important dose-limiting organ in patients receiving radiotherapy for various conditions is the brain. The mechanisms underlying brain and pituitary gland damage caused by radiation are largely unknown. It is of great importance to use radioprotective agents to protect against damage. This study aims to evaluate the neuroprotective effects of quercetin in experimental radiation-induced brain and pituitary gland damage. MATERIALS AND METHODS: A total of 60 adult male Wistar-albino rats were randomly divided into six groups (control, sham, radiation, quercetin, radiation + quercetin, and quercetin + radiation groups, with ten rats in each group). Quercetin was given to rats by oral gavage at 50 mg/kg/day. A whole-body single dose of 10 Gy radiation was applied to the rats. Tissue samples belonging to the groups were compared after excision. Histopathological changes in the brain tissue and pituitary gland were examined with hematoxylin-tissue samples in the groups and compared histologically and immunohistochemically. RESULTS: The histopathological examination of the brain and anterior pituitary gland sections showed marked damage in the radiation-treated rats, while the quercetin-administered groups showed normal tissue architecture. While neuropeptid Y immunoreactivity was increased, synaptophysin immunoreactivity was decreased in the brains of radiation-treated rats. However, when neuropeptide Y and synaptophysin expression were assessed in the anterior pituitary gland, there was no significant difference between the groups. CONCLUSION: Consequently, quercetin may be a potential pharmacological agent in modulating radiation-induced damage in rats. However, extra experimental and preclinical studies are needed to confirm our findings before they can be used clinically.


Asunto(s)
Fármacos Neuroprotectores , Quercetina , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Rayos gamma/efectos adversos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sinaptofisina , Ratas Wistar , Estrés Oxidativo , Antioxidantes/farmacología
18.
Lung Cancer ; 189: 107471, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38306886

RESUMEN

BACKGROUND: Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a recently recognized distinct clinicopathological entity according to the fifth edition of the 2021 World Health Organization Classification (WHO) for thoracic tumors. Thoracic SMARCA4-UTs are diagnostically challenging to diagnose, especially on small biopsies. METHODS: We identified 35 thoracic SMARCA4-UTs from the Department of Pathology of West China Hospital, Sichuan University, between January 2017 and December 2022. In the present study, we summarized the clinicopathological features, prognostic significance and immunotherapy efficacy of thoracic SMARCA4-UTs. RESULTS: All 35 patients were male, and 88.6 % were smokers. The left upper lobe (25.7 %) and mediastinum (20.0 %) were the most affected sites. 17.1 % of the patients received surgical treatment. 30.4 % of the patients were stage III, and 69.6 % were stage IV. Solid architecture (100 %), rhabdoid morphology (51.4 %) and necrosis (42.9 %) were the common histological features. Immunohistochemical staining revealed CD34 and synaptophysin positivity in most patients (76.9 % and 65.2 %, respectively). Patients had unfavorable outcomes. Patients who received immunotherapy had better OS and PFS than those who did not (p = 0.007 and p = 0.02, respectively). Five patients were evaluated for immunotherapy efficacy, and four of those patients were negative expression of PD-L1. Cases 1-4 presented TIL counts ranging from 20 to 1000/HPF. Case 5 presented TIL counts of 5-10/HPF. Mutations in SMARCA4 were confirmed in cases 4 and 5, and the TMB was 5.98 and 5.03 mutations/Mb, respectively. Case 1 achieved a CR, cases 2-4 achieved a PR, and case 5 had a PD. Five patients who received immunotherapy were all alive, with OS ranging from 10.7 to 33.6 months. CONCLUSIONS: Thoracic SMARCA4-UTs exhibited an aggressive clinical course, presented solid architecture with or without necrosis and/or rhabdoid morphology, and frequently expressed CD34 and synaptophysin. Some thoracic SMARCA4-UTs appear to be associated with responsiveness to immunotherapy, suggesting the need for validation in larger series.


Asunto(s)
Neoplasias Pulmonares , Sarcoma , Humanos , Masculino , Biomarcadores de Tumor/genética , ADN Helicasas/genética , Neoplasias Pulmonares/terapia , Necrosis , Proteínas Nucleares/genética , Pronóstico , Sarcoma/patología , Sinaptofisina , Factores de Transcripción/genética
19.
Diagn Pathol ; 19(1): 27, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326851

RESUMEN

INTRODUCTION: NUT carcinoma is a rare cancer associated with a poor prognosis. Because of its rarity, its diagnosis is challenging and is usually made by excluding other diagnoses. Immunohistochemical analysis is a reliable technique that contributes to a correct diagnosis, but overestimating the expression of neuroendocrine (NE) markers may result in an incorrect diagnosis. In this study, we established the immunohistochemical phenotypes of NUT carcinoma compared with tumors that mimic its phenotype to identify potential diagnostic pitfalls. METHODS: Eight cases of NUT carcinoma were examined along with eight basaloid squamous cell carcinomas and thirteen cases of small cell carcinoma using an immunohistochemical panel consisting of various antibodies. RESULTS: Of the eight NUT carcinomas, three patients had a smoking history. All the cases examined for INSM1 were positive (6/6, 100%), although the staining was somewhat weak. Among the NE markers, synaptophysin was variably positive in two NUT carcinomas (2/6, 33%); however, all cases were negative for ASCL1, chromogranin A, and CD56. Moreover, the squamous cell markers, p40 and CK5/6, were weakly expressed in 4/6 (67%) and 3/6 (50%) of the NUT carcinomas, respectively. CONCLUSIONS: For tumors with an ambiguous morphology, applying the neuroendocrine phenotype of NUT carcinoma may be misleading; particularly, when distinguishing it from small-cell carcinoma. Similarly, null or weak expression of squamous cell markers may be observed in NUT carcinoma, but this differs from squamous cell carcinoma, which consistently demonstrates strong positivity for squamous cell markers.


Asunto(s)
Carcinoma Neuroendocrino , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Biomarcadores de Tumor/análisis , Sinaptofisina/análisis , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/patología , Células Epiteliales/patología , Fenotipo , Carcinoma Neuroendocrino/patología , Proteínas Represoras/análisis
20.
Cancer Biol Ther ; 25(1): 2364433, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38926911

RESUMEN

Prostate cancer has heterogeneous growth patterns, and its prognosis is the poorest when it progresses to a neuroendocrine phenotype. Using bioinformatic analysis, we evaluated RNA expression of neuroendocrine genes in a panel of five different cancer types: prostate adenocarcinoma, breast cancer, kidney chromophobe, kidney renal clear cell carcinoma and kidney renal papillary cell carcinoma. Our results show that specific neuroendocrine genes are significantly dysregulated in these tumors, suggesting that they play an active role in cancer progression. Among others, synaptophysin (SYP), a conventional neuroendocrine marker, is upregulated in prostate adenocarcinoma (PRAD) and breast cancer (BRCA). Our analysis shows that SYP is enriched in small extracellular vesicles (sEVs) derived from plasma of PRAD patients, but it is absent in sEVs derived from plasma of healthy donors. Similarly, classical sEV markers are enriched in sEVs derived from plasma of prostate cancer patients, but weakly detectable in sEVs derived from plasma of healthy donors. Overall, our results pave the way to explore new strategies to diagnose these diseases based on the neuroendocrine gene expression in patient tumors or plasma sEVs.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Sinaptofisina/metabolismo , Sinaptofisina/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Perfilación de la Expresión Génica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA