Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Appl Environ Microbiol ; 81(23): 8118-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386055

RESUMO

Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.


Assuntos
Bacteriófagos/genética , Escherichia coli O157/metabolismo , Escherichia coli O157/virologia , Prófagos/genética , Transcriptoma , Proteínas Virais/genética , Bacteriófagos/metabolismo , Escherichia coli O157/genética , Perfilação da Expressão Gênica , Prófagos/metabolismo , Análise de Sequência de RNA , Proteínas Virais/metabolismo
2.
Sci Rep ; 14(1): 8245, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589670

RESUMO

The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Coagulase/genética , Genoma Viral , Pele/microbiologia , Fagos de Staphylococcus/genética , Staphylococcus/genética
3.
J Vis Exp ; (203)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251745

RESUMO

Temperate phages are found integrated as prophages in the majority of bacterial genomes. Some prophages are cryptic and fixed in the bacterial chromosome, but others are active and can be triggered into a replicative form either spontaneously or by exposure to inducing factors. Prophages are commonly associated with the ability to confer toxin production or other virulence-associated traits on their host cell. More recent studies have shown they can play a much bigger role in altering the physiology of their hosts. The technique described here has enabled us to investigate how prophages affect gene expression in the opportunistic bacterium Pseudomonas aeruginosa. In this work, the growth of the wild-type P. aeruginosa strain PAO1 was compared with that of isogenic lysogens carrying different combinations of prophages from the Liverpool Epidemic Strain (LES) LESB58. In a lysogen culture, a proportion of bacterial cells will be supporting lytic bacteriophage replication (spontaneous induction) with a high level of expression per cell of late phage genes, such as those associated with the assembly of phage particles, thus masking the low-level gene expression associated with lysogen-restricted gene expression. The impact of spontaneous induction can thus obscure prophage gene expression across a lysogen population. Growth profiling experiments were used to identify spontaneous induction, which was minimal during the early exponential growth phase. This study reports how to prepare sample cultures during the early exponential growth phase and how to set up adequate controls despite low cell numbers. These protocols ensure the reliable and reproducible comparison of wild-type and lysogenic bacteria under various conditions, thus improving the transcriptomic profiling of prophage genomes and aiding in the identification of previously unrecognized prophage functions.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Perfilação da Expressão Gênica , Técnicas de Tipagem Bacteriana , Contagem de Células , Cromossomos Bacterianos
4.
Microbiol Spectr ; : e0260423, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728369

RESUMO

The adsorption process is the first step in the lifecycle of phages and plays a decisive role in the entire infection process. Identifying the adsorption mechanism of phages not only makes phage therapy more precise and efficient but also enables the exploration of other potential applications and modifications of phages. Phage LP31 can lyse multiple Salmonella serotypes, efficiently clearing biofilms formed by Salmonella enterica serovar Enteritidis (S. Enteritidis) and significantly reducing the concentration of S. Enteritidis in chicken feces. Therefore, LP31 has great potential for many practical applications. In this study, we established an efficient screening method for phage infection-related genes and identified a total of 10 genes related to the adsorption process of phage LP31. After the construction of strain C50041ΔrfaL 58-358, it was found that the knockout strain had a rough phenotype as an O-antigen-deficient strain. Adsorption rate and transmission electron microscopy experiments showed that the receptor for phage LP31 was the O9 antigen of S. Enteritidis. Homology comparison and adsorption experiments confirmed that the tail fiber protein Lp35 of phage LP31 participated in the adsorption process as a receptor-binding protein. IMPORTANCE A full understanding of the interaction between phages and their receptors can help with the development of phage-related products. Phages like LP31 with the tail fiber protein Lp35, or a closely related protein, have been reported to effectively recognize and infect multiple Salmonella serotypes. However, the role of these proteins in phage infection has not been previously described. In this study, we established an efficient screening method to detect phage adsorption to host receptors. We found that phage LP31 can utilize its tail fiber protein Lp35 to adsorb to the O9 antigen of S. Enteritidis, initiating the infection process. This study provides a great model system for further studies of how a phage-encoded receptor-binding protein (RBP) interacts with its host's RBP binding target, and this new model offers opportunities for further theoretical and experimental studies to understand the infection mechanism of phages.

5.
BMC Genomics ; 13: 311, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22799768

RESUMO

BACKGROUND: Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. RESULTS: The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. CONCLUSIONS: The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Genômica/métodos , Toxina Shiga/genética , Genes Virais/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
6.
Environ Microbiol ; 14(4): 1077-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22225785

RESUMO

Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ.


Assuntos
Celulose/metabolismo , Fibrobacter/fisiologia , Eliminação de Resíduos , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Celulose/análise , Clostridium/genética , Clostridium/metabolismo , Primers do DNA/genética , Primers do DNA/metabolismo , Ecologia , Fibrobacter/genética , Fibrobacter/metabolismo , Fungos/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Resíduos/estatística & dados numéricos
7.
Microbiology (Reading) ; 158(Pt 2): 488-497, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22096150

RESUMO

Shigatoxigenic Escherichia coli (STEC) such as E. coli O157 are significant human pathogens, capable of producing severe, systemic disease outcomes. The more serious symptoms associated with STEC infection are primarily the result of Shiga toxin (Stx) production, directed by converting Stx bacteriophages. During phage-mediated replication and host cell lysis, the toxins are released en masse from the bacterial cells, and the severity of disease is linked inexorably to toxin load. It is common for a single bacterial host to harbour more than one heterogeneous Stx prophage, and it has also been recently proven that multiple isogenic prophage copies can exist in a single cell, contrary to the lambda immunity model. It is possible that in these multiple lysogens there is an increased potential for production of Stx. This study investigated the expression profiles of single and double isogenic lysogens of Stx phage 24(B) using quantitative PCR to examine transcription levels, and a reporter gene construct as a proxy for the translation levels of stx transcripts. Toxin gene expression in double lysogens was in excess of the single lysogen counterpart, both in the prophage state and after induction of the lytic life cycle. In addition, double lysogens were found to be more sensitive to an increased induction stimulus than single lysogens, suggesting that maintenance of a stable prophage is less likely when multiple phage genome copies are present. Overall, these data demonstrate that the phenomenon of multiple lysogeny in STEC has the potential to impact upon disease pathology through increased toxin load.


Assuntos
Bacteriófagos/fisiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/metabolismo , Escherichia coli O157/virologia , Prófagos/fisiologia , Toxina Shiga/metabolismo , Bacteriófagos/genética , Escherichia coli O157/genética , Humanos , Lisogenia , Prófagos/genética , Toxina Shiga/genética
8.
Appl Environ Microbiol ; 78(9): 3495-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389367

RESUMO

The relative abundance of micromonosporas in the bacterial communities inhabiting cellulose baits, water columns, and sediments of two freshwater lakes was determined by quantitative PCR (qPCR) of reverse-transcribed 16S rRNA. Micromonospora spp. were shown to be significant members of the active bacterial population colonizing cellulosic substrates in the lake sediment, and their increased prevalence with greater depth was confirmed by enumeration of CFU.


Assuntos
Celulose/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Micromonospora/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Carga Bacteriana/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Micromonospora/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
BMC Microbiol ; 12: 42, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22439817

RESUMO

BACKGROUND: Shigatoxigenic E. coli are a global and emerging health concern. Shiga toxin, Stx, is encoded on the genome of temperate, lambdoid Stx phages. Genes essential for phage maintenance and replication are encoded on approximately 50% of the genome, while most of the remaining genes are of unknown function nor is it known if these annotated hypothetical genes are even expressed. It is hypothesized that many of the latter have been maintained due to positive selection pressure, and that some, expressed in the lysogen host, have a role in pathogenicity. This study used Change Mediated Antigen Technology (CMAT)™ and 2D-PAGE, in combination with RT-qPCR, to identify Stx phage genes that are expressed in E. coli during the lysogenic cycle. RESULTS: Lysogen cultures propagated for 5-6 hours produced a high cell density with a low proportion of spontaneous prophage induction events. The expression of 26 phage genes was detected in these cultures by differential 2D-PAGE of expressed proteins and CMAT. Detailed analyses of 10 of these genes revealed that three were unequivocally expressed in the lysogen, two expressed from a known lysogenic cycle promoter and one uncoupled from the phage regulatory network. CONCLUSION: Propagation of a lysogen culture in which no cells at all are undergoing spontaneous lysis is impossible. To overcome this, RT-qPCR was used to determine gene expression profiles associated with the growth phase of lysogens. This enabled the definitive identification of three lambdoid Stx phage genes that are expressed in the lysogen and seven that are expressed during lysis. Conservation of these genes in this phage genome, and other Stx phages where they have been identified as present, indicates their importance in the phage/lysogen life cycle, with possible implications for the biology and pathogenicity of the bacterial host.


Assuntos
Bacteriófago lambda/genética , Genes Virais , Lisogenia , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/virologia , Bacteriófago lambda/metabolismo , Eletroforese em Gel Bidimensional , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Transcriptoma
10.
Invest Ophthalmol Vis Sci ; 63(1): 11, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994769

RESUMO

Purpose: To determine the amoebicidal activity of functionalized poly-epsilon-lysine hydrogels (pɛK+) against Acanthamoeba castellanii. Methods: A. castellanii trophozoites and cysts were grown in the presence of pɛK solution (0-2.17 mM), pɛK or pɛK+ hydrogels, or commercial hydrogel contact lens (CL) for 24 hours or 7 days in PBS or Peptone-Yeast-Glucose (PYG) media (nutrient-deplete or nutrient-replete cultures, respectively). Toxicity was determined using propidium iodide and imaged using fluorescence microscopy. Ex vivo porcine corneas were inoculated with A. castellanii trophozoites ± pɛK, pɛK+ hydrogels or commercial hydrogel CL for 7 days. Corneal infection was assessed by periodic acid-Schiff staining and histologic analysis. Regrowth of A. castellanii from hydrogel lenses and corneal discs at 7 days was assessed using microscopy and enumeration. Results: The toxicity of pɛK+ hydrogels resulted in the death of 98.52% or 83.31% of the trophozoites at 24 hours or 7 days, respectively. The toxicity of pɛK+ hydrogels resulted in the death of 70.59% or 82.32% of the cysts in PBS at 24 hours or 7 days, respectively. Cysts exposed to pɛK+ hydrogels in PYG medium resulted in 75.37% and 87.14% death at 24 hours and 7 days. Ex vivo corneas infected with trophozoites and incubated with pɛK+ hydrogels showed the absence of A. castellanii in the stroma, with no regrowth from corneas or pɛK+ hydrogel, compared with infected-only corneas and those incubated in presence of commercial hydrogel CL. Conclusions: pɛK+ hydrogels demonstrated pronounced amoebicidal and cysticidal activity against A. castellanii. pɛK+ hydrogels have the potential for use as CLs that could minimize the risk of CL-associated Acanthamoeba keratitis.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Córnea/parasitologia , Infecções Oculares Parasitárias/tratamento farmacológico , Hidrogéis/farmacologia , Polilisina/farmacologia , Ceratite por Acanthamoeba/parasitologia , Amebicidas/toxicidade , Animais , Células Cultivadas , Soluções para Lentes de Contato/farmacologia , Modelos Animais de Doenças , Epitélio Corneano/efeitos dos fármacos , Infecções Oculares Parasitárias/parasitologia , Humanos , Hidrogéis/toxicidade , Microscopia de Fluorescência , Polilisina/toxicidade , Suínos , Trofozoítos/efeitos dos fármacos
11.
J Virol ; 84(13): 6876-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20375161

RESUMO

Bacteriophage lambda has an archetypal immunity system, which prevents the superinfection of its Escherichia coli lysogens. It is now known that superinfection can occur with toxigenic lambda-like phages at a high frequency, and here we demonstrate that the superinfection of a lambda lysogen can lead to the acquisition of additional lambda genomes, which was confirmed by Southern hybridization and quantitative PCR. As many as eight integration events were observed but at a very low frequency (6.4 x 10(-4)) and always as multiple insertions at the established primary integration site in E. coli. Sequence analysis of the complete immunity region demonstrated that these multiply infected lysogens were not immunity mutants. In conclusion, although lambda superinfection immunity can be confounded, it is a rare event.


Assuntos
Bacteriófago lambda/fisiologia , Escherichia coli/virologia , Lisogenia/fisiologia , Prófagos/fisiologia , Superinfecção , Integração Viral , Sequência de Aminoácidos , Bacteriófago lambda/crescimento & desenvolvimento , Sequência de Bases , Southern Blotting , DNA Bacteriano/genética , DNA Viral/genética , Lisogenia/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Prófagos/crescimento & desenvolvimento , Análise de Sequência de DNA
12.
Water Res ; 203: 117568, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450465

RESUMO

The discharge of wastewater-derived viruses in aquatic environments impacts catchment-scale virome composition. To explore this, we used viromic analysis of RNA and DNA virus-like particles to holistically track virus communities entering and leaving wastewater treatment plants and the connecting river catchment system and estuary. We reconstructed >40 000 partial viral genomes into 10 149 species-level groups, dominated by dsDNA and (+)ssRNA bacteriophages (Caudoviricetes and Leviviricetes) and a small number of genomes that could pose a risk to human health. We found substantial viral diversity and geographically distinct virus communities associated with different wastewater treatment plants. River and estuarine water bodies harboured more diverse viral communities in downstream locations, influenced by tidal movement and proximity to wastewater treatment plants. Shellfish and beach sand were enriched in viral communities when compared with the surrounding water, acting as entrapment matrices for virus particles. Extensive phylogenetic analyses of environmental-derived and reference sequences showed the presence of human-associated sapovirus GII in all sample types, multiple rotavirus A strains in wastewater and a diverse set of picorna-like viruses associated with shellfish. We conclude that wastewater-derived viral genetic material is commonly deposited in the environment and can be traced throughout the freshwater-marine continuum of the river catchment, where it is influenced by local geography, weather events and tidal effects. Our data illustrate the utility of viromic analyses for wastewater- and environment-based ecology and epidemiology, and we present a conceptual model for the circulation of all types of viruses in a freshwater catchment.


Assuntos
Vírus , Águas Residuárias , Humanos , Filogenia , Rios , Viroma , Vírus/genética
13.
Environ Microbiol ; 12(5): 1194-204, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20148931

RESUMO

To address whether seasonal variability exists among Shiga toxin-encoding bacteriophage (Stx phage) numbers on a cattle farm, conventional plaque assay was performed on water samples collected over a 17 month period. Distinct seasonal variation in bacteriophage numbers was evident, peaking between June and August. Removal of cattle from the pasture precipitated a reduction in bacteriophage numbers, and during the winter months, no bacteriophage infecting Escherichia coli were detected, a surprising occurrence considering that 10(31) tailed-bacteriophages are estimated to populate the globe. To address this discrepancy a culture-independent method based on quantitative PCR was developed. Primers targeting the Q gene and stx genes were designed that accurately and discriminately quantified artificial mixed lambdoid bacteriophage populations. Application of these primer sets to water samples possessing no detectable phages by plaque assay, demonstrated that the number of lambdoid bacteriophage ranged from 4.7 x 10(4) to 6.5 x 10(6) ml(-1), with one in 10(3) free lambdoid bacteriophages carrying a Shiga toxin operon (stx). Specific molecular biological tools and discriminatory gene targets have enabled virus populations in the natural environment to be enumerated and similar strategies could replace existing propagation-dependent techniques, which grossly underestimate the abundance of viral entities.


Assuntos
Bacteriófago lambda/isolamento & purificação , Água Doce/virologia , Reação em Cadeia da Polimerase/métodos , Toxina Shiga/genética , Proteínas Virais/genética , Criação de Animais Domésticos , Animais , Bacteriófago lambda/genética , Sequência de Bases , Bovinos , Primers do DNA , Dados de Sequência Molecular , Óperon , Toxina Shiga/metabolismo , Ensaio de Placa Viral
14.
Appl Environ Microbiol ; 76(4): 1301-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20023104

RESUMO

The microbial community composition of colonized cotton and leachate samples from a landfill was quantified using small subunit (SSU) rRNA probes (quantitative rRNA hybridization). Relative quantification of bacteria, eukaryotes, and archaea revealed variations in the landfill microbial community between samples from different areas of the landfill site and indicated the presence of potentially novel archaea. Anaerobic fungi were quantified in rumen fluid samples but were not sufficiently abundant for direct detection in the landfill samples.


Assuntos
RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Microbiologia do Solo , Animais , Sequência de Bases , Bovinos , Clostridium/genética , Clostridium/isolamento & purificação , Sondas de DNA/genética , Ecossistema , RNA Arqueal/genética , RNA Bacteriano/genética , Eliminação de Resíduos , Rúmen/microbiologia , Ovinos , Poluentes Químicos da Água
15.
Appl Environ Microbiol ; 76(7): 2360-5, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20139312

RESUMO

A high-throughput 96-well plate-based method for the rapid induction of endogenous prophages from individual bacterial strains was developed. The detection of endogenous prophages was achieved by the filtration of the culture liquor following norfloxacin induction and subsequent PCRs targeting bacteriophage-carried gene markers. The induction method was tested on 188 putative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains and demonstrated the ability to detect both lambdoid and stx-carrying bacteriophages in strains for which plaques were not observed via plaque assay. Lambdoid bacteriophages were detected in 37% of the induced phage preparations via amplification of the Q gene, and Stx1- and Stx2-encoding phages were detected in 2 and 14% of the strains, respectively. The method therefore provided greater sensitivity for the detection of Stx and other lambdoid bacteriophage populations carried by STEC strains than that for the established method of plaque assay using bacterial indicator strains, enabling, for the first time, large-scale bacteriophage population and diversity studies.


Assuntos
Colífagos/crescimento & desenvolvimento , Prófagos/crescimento & desenvolvimento , Toxina Shiga/biossíntese , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/virologia , Ativação Viral , Antibacterianos/farmacologia , Colífagos/genética , Norfloxacino/farmacologia , Prófagos/genética , Sensibilidade e Especificidade , Escherichia coli Shiga Toxigênica/efeitos dos fármacos
16.
Invest Ophthalmol Vis Sci ; 61(10): 18, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32776141

RESUMO

Purpose: To determine the antimicrobial activity of poly-epsilon-lysine (pɛK) functionalization of hydrogels against Pseudomonas aeruginosa. Methods: Antimicrobial activities of pɛK and pɛK+ hydrogels were tested against both keratitis and a laboratory strain of Paeruginosa at a range of inocula sizes, over 4 and 24 hours. The number of viable CFU on pɛK and pɛK+ hydrogels or commercial contact lenses (CL) was investigated. Ex vivo porcine corneas were inoculated with Paeruginosa PAO1 (103 CFU) and incubated with pɛK+ hydrogels or commercial hydrogel CL for 24 hours and the effects of infection determined. Results: PɛK+ hydrogels showed log reductions in viable CFU compared with pɛK hydrogels for all Paeruginosa strains, depending on inocula sizes and incubation time. After 24 hours pɛK+ hydrogels showed >5 and >7.5 log reduction in CFU compared with commercial hydrogel CL at 103 and 106 CFU, respectively. In an ex vivo porcine corneal infection model, pɛK+ hydrogels led to a significant decrease in viable PAO1 CFU and histologic analysis indicated a decreased infiltration of PAO1 into the stroma. Conclusions: PɛK+ hydrogels demonstrated enhanced antimicrobial activity versus nonfunctionalized pɛK hydrogels against clinically relevant Paeruginosa strains. PɛK+ hydrogels have the potential to be used as a bandage CL with innate antimicrobial characteristics to minimize the risk of microbial keratitis.


Assuntos
Antibacterianos/farmacologia , Córnea/microbiologia , Infecções Oculares Bacterianas/tratamento farmacológico , Ceratite/tratamento farmacológico , Polilisina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Contagem de Colônia Microbiana , Infecções Oculares Bacterianas/microbiologia , Hidrogéis , Ceratite/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Suínos
17.
Appl Environ Microbiol ; 75(15): 5148-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502438

RESUMO

PCR and quantitative PCR (qPCR) primers targeting the 16S rRNA gene were used to detect and quantify members of the genus Fibrobacter in lake water, sediment and colonized cotton taken from two freshwater lakes. Phylogenetic analysis identified two groups of sequences; those clustered with Fibrobacter succinogenes, the type species, and a defined cluster of clones loosely associated with several Fibrobacter sequences observed previously in clone libraries from freshwater environments. 16S rRNA gene sequences recovered in the same way from soil samples and ovine feces in the surrounding land were all F. succinogenes and did not include any from this group of the "freshwater" Fibrobacteres. In all cases, nested PCR was required to detect Fibrobacter 16S rRNA genes, and qPCR analysis of reverse transcribed bacterial community RNA confirmed their very low relative abundance on colonized cotton baits in the water column (at 0, 3, 7, 11, and 13 m) and on the sediment surface (<0.02% of total bacterial rRNA). However, in Esthwaite Water sediment itself, the relative abundance of fibrobacters was 2 orders of magnitude higher (ca. 1% of total bacterial rRNA). The presence of fibrobacters, including the cellulolytic rumen species F. succinogenes, on colonized cellulose samples and in lake sediment suggests that these organisms may contribute to the primary degradation of plant and algal biomass in freshwater lake ecosystems.


Assuntos
Fibrobacter/genética , Fibrobacter/isolamento & purificação , Água Doce/microbiologia , Animais , Análise por Conglomerados , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fezes/microbiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ovinos , Microbiologia do Solo
18.
Environ Microbiol ; 10(5): 1310-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18266756

RESUMO

Members of the bacterial genus Fibrobacter have long been considered important components of the anaerobic cellulolytic community in the herbivore gut, but their presence and activity in other environments is largely unknown. In this study, a specific polymerase chain reaction (PCR) primer set, targeting the 16S rRNA gene of Fibrobacter spp., was applied to community DNA from five landfill sites followed by temporal thermal gel electrophoresis (TTGE) analysis of cloned amplification products. Phylogenetic analysis of clone sequences indicated the presence of novel clusters closely related to the genus Fibrobacter. There are two named species, Fibrobacter succinogenes and F. intestinalis, and only two of the 58 sequenced clones were identified with them, and both were F. succinogenes. The clone sequences from landfill were recovered in five distinct clusters within the Fibrobacter lineage, and four of these were novel. Quantitative PCR (qPCR) assays of reverse-transcribed community RNA from landfill leachates and rumen fluid samples indicated that the abundance of Fibrobacter spp. relative to total bacteria varied from 0.2% to 40% in landfill, and 21% to 32% in the rumen, and these data demonstrate that fibrobacters can be a significant component of the microbial community in landfill ecosystems. This is the first evidence for Fibrobacter spp. outside the gut ecosystem, and as the only cultivated representatives of this group are actively cellulolytic, their diversity and abundance points to a possible role in cellulose hydrolysis in landfill, and perhaps other anaerobic environments also.


Assuntos
Fibrobacter/classificação , Fibrobacter/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Eliminação de Resíduos , Clonagem Molecular , DNA Bacteriano/análise , Fibrobacter/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Appl Environ Microbiol ; 74(22): 7080-4, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18820070

RESUMO

A number of Micromonospora strains isolated from the water column, sediment, and cellulose baits placed in freshwater lakes were shown to be able to degrade cellulose in lake water without any addition of nutrients. A selective isolation method was also developed to demonstrate that CFU arose from both spores and hyphae that inhabit the lake environment. Gyrase B gene sequencing performed on the isolates identified a number of new centers of variation within Micromonospora, but the most actively cellulolytic strains were recovered in a single cluster that equated with the type species of the genus, M. chalcea.


Assuntos
Celulose/metabolismo , DNA Girase/genética , Água Doce/microbiologia , Micromonospora/classificação , Micromonospora/metabolismo , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Micromonospora/genética , Micromonospora/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
20.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795788

RESUMO

Detection of viruses in the environment is heavily dependent on PCR-based approaches that require reference sequences for primer design. While this strategy can accurately detect known viruses, it will not find novel genotypes or emerging and invasive viral species. In this study, we investigated the use of viromics, i.e., high-throughput sequencing of the biosphere's viral fraction, to detect human-/animal-pathogenic RNA viruses in the Conwy river catchment area in Wales, United Kingdom. Using a combination of filtering and nuclease treatment, we extracted the viral fraction from wastewater and estuarine river water and sediment, followed by high-throughput RNA sequencing (RNA-Seq) analysis on the Illumina HiSeq platform, for the discovery of RNA virus genomes. We found a higher richness of RNA viruses in wastewater samples than in river water and sediment, and we assembled a complete norovirus genotype GI.2 genome from wastewater effluent, which was not contemporaneously detected by conventional reverse transcription-quantitative PCR (qRT-PCR). The simultaneous presence of diverse rotavirus signatures in wastewater indicated the potential for zoonotic infections in the area and suggested runoff from pig farms as a possible origin of these viruses. Our results show that viromics can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided appropriate and rigorous controls are included. IMPORTANCE Enteric viruses cause gastrointestinal illness and are commonly transmitted through the fecal-oral route. When wastewater is released into river systems, these viruses can contaminate the environment. Our results show that we can use viromics to find the range of potentially pathogenic viruses that are present in the environment and identify prevalent genotypes. The ultimate goal is to trace the fate of these pathogenic viruses from origin to the point where they are a threat to human health, informing reference-based detection methods and water quality management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA