Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 70: 55-66, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033656

RESUMO

Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.


Assuntos
Bacillus subtilis , Engenharia Metabólica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Quitina/genética , Quitina/metabolismo , Quitosana , Engenharia Metabólica/métodos , Oligossacarídeos
2.
Metab Eng ; 67: 330-346, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329707

RESUMO

The regulation of single gene transcription level in the metabolic pathway is often failed to significantly improve the titer of the target product, and even leads to the imbalance of carbon/nitrogen metabolic network and cofactor network. Global transcription machinery engineering (gTME) can activate or inhibit the synergistic expression of multiple genes in specific metabolic pathways, so transcription factors with specific functions can be expressed according to different metabolic regulation requirements, thus effectively increasing the synthesis of target metabolites. In addition, maintaining intracellular redox balance through cofactor engineering can realize the self-balance of cofactors and promote the efficient synthesis of target products. In this study, we rebalanced the central carbon/nitrogen metabolism and redox metabolism of Corynebacterium glutamicum S9114 by gTME and redox cofactors engineering to promote the production of the nutraceutical N-acetylglucosamine (GlcNAc). Firstly, it was found that the overexpression of the transcription factor RamA can promote GlcNAc synthesis, and the titer was further improved to 16 g/L in shake flask by using a mutant RamA (RamAM). Secondly, a CRISPR interference (CRISPRi) system based on dCpf1 was developed and used to inhibit the expression of global negative transcriptional regulators of GlcNAc synthesis, which promoted the GlcNAc titer to 27.5 g/L. Thirdly, the cofactor specificity of the key enzymes in GlcNAc synthesis pathway was changed by rational protein engineering, and the titer of GlcNAc in shake flask was increased to 36.9 g/L. Finally, the production of GlcNAc was scaled up in a 50-L fermentor, and the titer reached 117.1 ± 1.9 g/L, which was 6.62 times that of the control group (17.7 ± 0.4 g/L), and the yield was increased from 0.19 g/g to 0.31 g/g glucose. The results obtained here highlight the importance of engineering the global regulation of central carbon/nitrogen metabolism and redox metabolism to improve the production performance of microbial cell factories.


Assuntos
Acetilglucosamina , Bacillus subtilis , Bacillus subtilis/genética , Engenharia Metabólica , Oxirredução , Fatores de Transcrição/genética
3.
Metab Eng ; 65: 156-166, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33161142

RESUMO

During cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate-fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate. YlSFC1 overexpression determined the inversion of isocitric acid/citric acid ratio towards isocitric acid, resulting in 33.4 ± 1.9 g/L and 43.3 ± 2.8 g/L of ICA production in test-tube cultivation with glucose and glycerol, respectively. These titers represent a 4.0 and 6.3-fold increase compared to the wild type. YlSFC1 gene expression was repressed in the wild type strain grown in glucose-based medium compared to olive oil medium explaining the reason for the preferred citric acid production during Y. lipolytica growth on carbohydrates. Coexpression of YlSFC1 and adenosine monophosphate deaminase YlAMPD genes together with inactivation of citrate mitochondrial carrier YlYHM2 gene enhanced isocitric acid accumulation up to 41.4 ± 4.1 g/L with an isocitric acid/citric acid ratio of 14.3 in a small-scale cultivation with glucose as a carbon source. During large-scale cultivation with glucose pulse-feeding, the engineered strain produced 136.7 ± 2.5 g/L of ICA with a process selectivity of 88.1%, the highest reported titer and selectivity to date. These results represent the first reported isocitric acid secretion by Y. lipolytica as a main organic acid during cultivation on carbohydrate. Moreover, we demonstrate for the first time that the replacement of one mitochondrial transport system for another can be an efficient tool for switching product accumulation.


Assuntos
Yarrowia , Transportadores de Ácidos Dicarboxílicos/genética , Isocitratos , Mitocôndrias/genética , Yarrowia/genética
4.
Biotechnol Bioeng ; 116(1): 5-18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229865

RESUMO

In prokaryotic cells, 3'-5' exonucleases can attenuate messenger RNA (mRNA) directionally from the direction of the 3'-5' untranslated region (UTR), and thus improving the stability of mRNAs without influencing normal cell growth and metabolism is a key challenge for protein production and metabolic engineering. Herein, we significantly improved mRNA stability by using synthetic repetitive extragenic palindromic (REP) sequences as an effective mRNA stabilizer in two typical prokaryotic microbes, namely, Escherichia coli for the production of cyclodextrin glucosyltransferase (CGTase) and Corynebacterium glutamicum for the production of N-acetylglucosamine (GlcNAc). First, we performed a high-throughput screen to select 4 out of 380 REP sequences generated by randomizing 6 nonconservative bases in the REP sequence designed as the degenerate base "N." Secondly, the REP sequence was inserted at several different positions after the stop codon of the CGTase-encoding gene. We found that mRNA stability was improved only when the space between the REP sequence and stop codon was longer than 12 base pairs (bp). Then, by reconstructing the spacer sequence and secondary structure of the REP sequence, a REP sequence with 8 bp in a stem-loop was obtained, and the CGTase activity increased from 210.6 to 291.5 U/ml. Furthermore, when this REP sequence was added to the 3'-UTR of glucosamine-6-phosphate N-acetyltransferase 1 ( GNA1), which is a gene encoding a key enzyme GNA1 in the GlcNAc synthesis pathway, the GNA1 activity was increased from 524.8 to 890.7 U/mg, and the GlcNAc titer was increased from 4.1 to 6.0 g/L in C. glutamicum. These findings suggest that the REP sequence plays an important function as an mRNA stabilizer in prokaryotic cells to stabilize its 3'-terminus of the mRNA by blocking the processing action of the 3'-5' exonuclease. Overall, this study provides new insight for the high-efficiency overexpression of target genes and pathway fine-tuning in bacteria.


Assuntos
Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Sequências Repetidas Invertidas , Engenharia Metabólica/métodos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Acetilglucosamina/biossíntese , Corynebacterium glutamicum/genética , Escherichia coli/genética , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , RNA Mensageiro/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA