Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biomacromolecules ; 19(7): 3048-3057, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29897739

RESUMO

The aggregate glue in spider webs is composed of hygroscopic low molecular mass compounds (LMMCs), glycoproteins and water. The LMMCs absorb atmospheric water and solvate the glycoproteins to spread and adhere to flying insects upon contact. The glue viscosity varies with humidity and there is an optimum range of viscosity where the adhesion is maximum. LMMCs composition and the humidity at which glue viscosity is optimized vary greatly among spider species. These findings suggest that spiders adapt to forage in diverse habitats by "tuning" LMMCs composition or how LMMCs interact with glycoproteins to control water uptake and adhesion. To test these hypotheses, we analyzed the LMMCs for spiders from diverse habitats and performed water uptake studies on intact glue droplets, isolated glue constituents, and synthetic LMMCs. Even though glue droplets showed differences in water uptake among spider species, we found no differences among species in hygroscopicity of natural or synthetic LMMCs mixtures. This demonstrates that LMMCs composition alone is insufficient to explain interspecific differences in water uptake of spider glues and instead support the hypothesis that an interaction between LMMCs and glycoproteins mediate differences in water uptake and adhesion.


Assuntos
Adesivos/química , Seda/química , Aranhas/química , Animais , Ecossistema , Glicoproteínas/química , Umidade , Seda/metabolismo , Aranhas/metabolismo , Viscosidade
2.
Chemosphere ; 313: 137300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414038

RESUMO

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
3.
ACS Biomater Sci Eng ; 8(8): 3354-3360, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894694

RESUMO

Spider aggregate glue can absorb moisture from the atmosphere to reduce its viscosity and become tacky. The viscosity at which glue adhesion is maximized is remarkably similar across spider species, even though that viscosity is achieved at very different relative humidity (RH) values matching their diverse habitats. However, the molecular changes in the protein structure and the bonding state of water (both referred to here as molecular structure) with respect to the changes in RH are not known. We use attenuated total reflectance-infrared (ATR-IR) spectroscopy to probe the changes in the molecular structure of glue as a function of RH for three spider species from different habitats. We find that the glue retains bound water at lower RH and absorbs liquid-like water at higher RH. The absorption of liquid-like water at high RH plasticizes the glue and explains the decrease in glue viscosity. The changes to protein conformations as a function RH are either subtle or not detectable by IR spectroscopy. Importantly, the molecular changes are reversible over multiple cycles of RH change. Further, separation of glue constituents results in a different humidity response as compared to pristine glue, supporting the standing hypothesis that the glue constituents have a synergistic association that makes spider glue a functional adhesive. The results presented in this study provide further insights into the mechanism of the humidity-responsive adhesion of spider glue.


Assuntos
Aranhas , Adesivos/química , Adesivos/metabolismo , Animais , Umidade , Aranhas/química , Aranhas/metabolismo , Viscosidade , Água/metabolismo
4.
Chemosphere ; 308(Pt 3): 136449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115477

RESUMO

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study. Twenty-two laboratories from six countries were provided three blind spiked clean water samples and asked to follow a standard operating procedure. The samples contained a known number of microplastics with different morphologies (fiber, fragment, sphere), colors (clear, white, green, blue, red, and orange), polymer types (PE, PS, PVC, and PET), and sizes (ranging from roughly 3-2000 µm), and natural materials (natural hair, fibers, and shells; 100-7000 µm) that could be mistaken for microplastics (i.e., false positives). Particle recovery was poor for the smallest size fraction (3-20 µm). Average recovery (±StDev) for all reported particles >50 µm was 94.5 ± 56.3%. After quality checks, recovery for >50 µm spiked particles was 51.3 ± 21.7%. Recovery varied based on morphology and color, with poorest recovery for fibers and the largest deviations for clear and white particles. Experience mattered; less experienced laboratories tended to report higher concentration and had a higher variance among replicates. Participants identified opportunity for increased accuracy and precision through training, improved color and morphology keys, and method alterations relevant to size fractionation. The resulting data informs future work, constraining and highlighting the value of microscopy for microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microscopia , Plásticos/análise , Polímeros , Cloreto de Polivinila/análise , Água/análise , Poluentes Químicos da Água/análise
5.
J R Soc Interface ; 17(162): 20190792, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31992163

RESUMO

Contaminants decrease adhesive strength by interfering with substrate contact. Spider webs adhering to moths present an ideal model to investigate how natural adhesives overcome contamination because moths' sacrificial layer of scales rubs off on sticky silk, facilitating escape. However, Cyrtarachninae spiders have evolved gluey capture threads that adhere well to moths. Cyrtarachne capture threads contain large glue droplets oversaturated with water, readily flowing but also prone to drying out. Here, we compare the spreading and adhesion of Cyrtarachne akirai glue on intact mothwings, denuded cuticle and glass to the glue of a common orb-weaving spider, Larinioides cornutus, to understand how C. akirai glue overcomes dirty surfaces. Videos show that C. akirai's glue spreading accelerates along the underlying moth cuticle after the glue seeps beneath the moth scales-not seen on denuded cuticle or hydrophilic glass. Larinioides cornutus glue droplets failed to penetrate the moth scales, their force of adhesion thus limited by the strength of attachment of scales to the cuticle. The large size and low viscosity of C. akirai glue droplets function together to use the three-dimensional topography of the moth's scales against itself via capillary forces. Infrared spectroscopy shows C. akirai glue droplets readily lose free-flowing water. We hypothesize that this loss of water leads to increased viscosity during spreading, increasing cohesive forces during pull-off. This glue's two-phase behaviour shows how natural selection can leverage a defensive specialization of prey against themselves and highlights a new design principle for synthetic adhesives for adhering to troublesome surfaces.


Assuntos
Mariposas , Aranhas , Adesivos , Animais , Umidade , Comportamento Predatório , Seda
6.
Nat Commun ; 9(1): 1890, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789602

RESUMO

Adhesion in humid environments is fundamentally challenging because of the presence of interfacial bound water. Spiders often hunt in wet habitats and overcome this challenge using sticky aggregate glue droplets whose adhesion is resistant to interfacial failure under humid conditions. The mechanism by which spider aggregate glue avoids interfacial failure in humid environments is still unknown. Here, we investigate the mechanism of aggregate glue adhesion by using interface-sensitive spectroscopy in conjunction with infrared spectroscopy. We demonstrate that glycoproteins act as primary binding agents at the interface. As humidity increases, we observe reversible changes in the interfacial secondary structure of glycoproteins. Surprisingly, we do not observe liquid-like water at the interface, even though liquid-like water increases inside the bulk with increasing humidity. We hypothesize that the hygroscopic compounds in aggregate glue sequester interfacial water. Using hygroscopic compounds to sequester interfacial water provides a novel design principle for developing water-resistant synthetic adhesives.

7.
R Soc Open Sci ; 5(11): 181296, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564415

RESUMO

Orb webs produced by araneoid spiders depend upon aggregate glue-coated capture threads to retain their prey. Moths are challenging prey for most spiders because their scales detach and contaminate the glue droplets, significantly decreasing adhesion. Cyrtarachne are moth-specialist orb-weaving spiders whose capture threads adhere well to moths. We compare the adhesive properties and chemistry of Cyrtarachne aggregate glue to other orb-weaving spiders to test hypotheses about their structure, chemistry and performance that could explain the strength of Cyrtarachne glue. We show that the unusually large glue droplets on Cyrtarachne capture threads make them approximately 8 times more adhesive on glass substrate than capture threads from typical orb-weaving species, but Cyrtarachne adhesion is similar to that of other species after normalization by glue volume. Glue viscosity reversibly changes over 1000-fold in response to atmospheric humidity, and the adhesive strength of many species of orb spiders is maximized at a viscosity of approximately 105-106 cst where the contributions of spreading and bulk cohesion are optimized. By contrast, viscosity of Cyrtarachne aggregate glue droplets is approximately 1000 times lower at maximum adhesive humidity, likely facilitating rapid spreading across moth scales. Water uptake by glue droplets is controlled, in part, by hygroscopic low molecular weight compounds. NMR showed evidence that Cyrtarachne glue contains a variety of unknown low molecular weight compounds. These compounds may help explain how Cyrtarachne produces such exceptionally large and low viscosity glue droplets, and also why these glue droplets rapidly lose water volume after brief ageing or exposure to even slightly dry (e.g. < 80% RH) conditions, permanently reducing their adhesion. We hypothesize that the combination of large glue droplet size and low viscosity helps Cyrtarachne glue to penetrate the gaps between moth scales.

8.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28490605

RESUMO

Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives.


Assuntos
Adesivos/química , Modelos Químicos , Seda/química , Aranhas , Animais , Umidade
9.
Sci Rep ; 5: 9030, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25761668

RESUMO

Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.


Assuntos
Adesivos , Proteínas/química , Sais/química , Seda , Aranhas , Adesivos/química , Animais , Seda/química
10.
ACS Nano ; 9(11): 11472-8, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26513350

RESUMO

Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.


Assuntos
Adesivos/química , Aranhas/química , Adesividade , Animais , Ecossistema , Umidade , Especificidade da Espécie , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA