Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(3): 423-438.e25, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249360

RESUMO

Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.


Assuntos
Imunidade Inata , Células-Tronco Pluripotentes/imunologia , Viroses/imunologia , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Células-Tronco Pluripotentes/virologia , Especificidade da Espécie
2.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38127913

RESUMO

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Assuntos
Anemia Falciforme , Eritropoese , Camundongos , Animais , Humanos , Eritropoese/fisiologia , Fator de Transcrição STAT5/metabolismo , Hemólise , Hemina/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Anemia Falciforme/complicações
3.
Blood ; 141(25): 3091-3108, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36952641

RESUMO

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid ß-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.


Assuntos
Anemia Falciforme , Heme , Humanos , Heme/metabolismo , Interleucina-4/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , PPAR gama , Receptor 4 Toll-Like/metabolismo , Macrófagos/metabolismo , Anemia Falciforme/metabolismo , Inflamação/metabolismo
4.
Nucleic Acids Res ; 51(10): 4774-4790, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36929421

RESUMO

Normal erythropoiesis requires the precise regulation of gene expression patterns, and transcription cofactors play a vital role in this process. Deregulation of cofactors has emerged as a key mechanism contributing to erythroid disorders. Through gene expression profiling, we found HES6 as an abundant cofactor expressed at gene level during human erythropoiesis. HES6 physically interacted with GATA1 and influenced the interaction of GATA1 with FOG1. Knockdown of HES6 impaired human erythropoiesis by decreasing GATA1 expression. Chromatin immunoprecipitation and RNA sequencing revealed a rich set of HES6- and GATA1-co-regulated genes involved in erythroid-related pathways. We also discovered a positive feedback loop composed of HES6, GATA1 and STAT1 in the regulation of erythropoiesis. Notably, erythropoietin (EPO) stimulation led to up-regulation of these loop components. Increased expression levels of loop components were observed in CD34+ cells of polycythemia vera patients. Interference by either HES6 knockdown or inhibition of STAT1 activity suppressed proliferation of erythroid cells with the JAK2V617F mutation. We further explored the impact of HES6 on polycythemia vera phenotypes in mice. The identification of the HES6-GATA1 regulatory loop and its regulation by EPO provides novel insights into human erythropoiesis regulated by EPO/EPOR and a potential therapeutic target for the management of polycythemia vera.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Eritropoese , Fator de Transcrição GATA1 , Proteínas Repressoras , Animais , Humanos , Camundongos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Perfilação da Expressão Gênica , Policitemia Vera/genética , Policitemia Vera/metabolismo , Proteínas Repressoras/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930825

RESUMO

SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking SF3B1 mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown. Using isogenic SF3B1 WT and mutant cell lines, normal human CD34 cells, and MDS patient cells, we define a previously unrecognized role of the kinase MAP3K7, encoded by a known mutant SF3B1-targeted transcript, in controlling proper terminal erythroid differentiation, and show how MAP3K7 missplicing leads to the anemia characteristic of SF3B1-mutated MDS, although not to ringed sideroblast formation. We found that p38 MAPK is deactivated in SF3B1 mutant isogenic and patient cells and that MAP3K7 is an upstream positive effector of p38 MAPK. We demonstrate that disruption of this MAP3K7-p38 MAPK pathway leads to premature down-regulation of GATA1, a master regulator of erythroid differentiation, and that this is sufficient to trigger accelerated differentiation, erythroid hyperplasia, and ultimately apoptosis. Our findings thus define the mechanism leading to the severe anemia found in MDS patients harboring SF3B1 mutations.


Assuntos
Anemia/metabolismo , Eritropoese , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação , Síndromes Mielodisplásicas/metabolismo , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Anemia/genética , Anemia/patologia , Diferenciação Celular/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Humanos , Células K562 , MAP Quinase Quinase Quinases/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Curr Opin Hematol ; 31(6): 275-284, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39046855

RESUMO

PURPOSE OF REVIEW: Sickle cell disease (SCD) is a hereditary blood disorder due to a single-point mutation in the ß-globin gene. The ensuing hemoglobin has the tendency to polymerize upon deoxygenation, leading to the typical sickle shape of red blood cells. While the primary pathology of sickle cell disease is a direct consequence of altered red blood cells, emerging evidence highlights the central role of macrophages in mediating hemoglobin scavenging, perpetuating oxidative stress and inflammation, and causing endothelial dysfunction and tissue remodeling. RECENT FINDINGS: Recent research uncovered the impact of heme and iron overload on macrophage polarization and functions in sickle cell disease, and its implication for chronic inflammation and tissue damage in vital organs such as the liver, spleen, lungs and kidneys. By providing a thorough understanding of the dynamic interactions between macrophages and various cellular components within the sickle cell disease milieu, these studies have laid the foundation for the identification of macrophage-related cellular and molecular mechanisms potentially targetable for therapeutic purposes to attenuate sickle complications. SUMMARY: This review provides a current update about recent discoveries on heme/iron-activated macrophages in SCD, shedding light on their critical role in disease pathophysiology. Ultimately, it proposes avenues for future research aimed at addressing the relevance of these cells for other sickle complications and at targeting them to mitigate disease morbidity and improve patient outcomes.


Assuntos
Anemia Falciforme , Heme , Ferro , Macrófagos , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Humanos , Heme/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Ferro/metabolismo , Ativação de Macrófagos , Animais , Estresse Oxidativo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia
7.
Haematologica ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961734

RESUMO

Generation of mammalian red blood cells requires the expulsion of polarized nuclei late in terminal erythroid differentiation. However, the mechanisms by which spherical erythroblasts determine the direction of nuclear polarization and maintain asymmetry during nuclear expulsion are poorly understood. Given the analogy of erythroblast enucleation to asymmetric cell division and the key role of Aurora kinases in mitosis, we sought to investigate the function of Aurora kinases in erythroblast enucleation. We found that AURKA (Aurora kinase A) is abundantly expressed in orthochromatic erythroblasts. Intriguingly, high-resolution confocal microscopy analyses revealed that AURKA co-localized with the centrosome on the side of the nucleus opposite its membrane contact point during polarization and subsequently translocated to the anterior end of the protrusive nucleus upon nuclear exit. Mechanistically, AURKA regulated centrosome maturation and localization via interaction with i-tubulin to provide polarization orientation for the nucleus. Furthermore, we identified ECT2 (epithelial cell transforming 2), a guanine nucleotide exchange factor, as a new interacting protein and ubiquitination substrate of AURKA. After forming the nuclear protrusion, AURKA translocated to the anterior end of the protrusive nucleus to directly degrade ECT2, which is partly dependent on kinase activity of AURKA. Moreover, knockdown of ECT2 rescued impaired enucleation caused by AURKA inhibition. Our findings have uncovered a previously unrecognized role of Aurora kinases in the establishment of nuclear polarization and eventual nuclear extrusion and provide new mechanistic insights into erythroblast enucleation.

8.
J Stroke Cerebrovasc Dis ; 33(5): 107668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423151

RESUMO

BACKGROUND: Stroke is a major cause of death and severe disability, and there remains a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke (IS) to protect the brain against damage before and during recanalization. Caveolin-1 (CAV1), an integrated protein that is located at the caveolar membrane, has been reported to exert neuroprotective effects during IS. Nevertheless, the mechanism remains largely unknown. Here, we explored the upstream modifiers of CAV1 in IS. METHODS: E3 ubiquitin ligases of CAV1 that are differentially expressed in IS were screened using multiple databases. The transcription factor responsible for the dysregulation of E3 ubiquitin-protein ligase synoviolin (SYVN1) in IS was predicted and verified. Genetic manipulations by lentiviral vectors were applied to investigate the effects of double-strand-break repair protein rad21 homolog (RAD21), SYVN1, and CAV1 in a middle cerebral artery occlusion (MCAO) mouse model and mouse HT22 hippocampal neurons induced by oxygen-glucose deprivation (OGD). RESULTS: SYVN1 was highly expressed in mice with MCAO, and knockdown of SYVN1 alleviated IS injury in mice, as evidenced by limited infarction volume, the lower water content in the brain, and repressed apoptosis and inflammatory response. RAD21 inhibited the transcription of SYVN1, thereby reducing the ubiquitination modification of CAV1. Overexpression of RAD21 elicited a neuroprotective role as well in mice with MCAO and HT22 induced with OGD, which was overturned by SYVN1. CONCLUSION: Transcriptional repression of SYVN1 by RAD21 alleviates IS in mice by reducing ubiquitination modification of CAV1.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ubiquitina-Proteína Ligases , Animais , Camundongos , Apoptose , Caveolina 1/genética , Caveolina 1/metabolismo , Infarto da Artéria Cerebral Média/genética , Acidente Vascular Cerebral/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Blood ; 138(13): 1162-1171, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34166491

RESUMO

Patients with sickle cell disease (SCD) suffer from intravascular hemolysis-associated vascular injury and tissue damage. Classical monocytes (CMo), which are the most abundant of circulating monocytes, are activated in SCD, but the cause and consequences of activation remain incompletely understood. We found a positive correlation between total plasma heme levels and circulating interferon-α (IFN-α) in patients with SCD along with upregulation of the type I IFN (IFN-I) inducible genes in sort-purified SCD patients' CMo by transcriptome analysis. We demonstrated that hemolysis led to IFN-I expression, predominantly by mouse liver monocyte and macrophages (Mⲫ), primarily through Tank kinase binding 1 (TBK1)/IκB kinase-ε (IKKε) but not TLR4. In response to hemolysis-induced IFN-I, mouse CMo migrated to the liver and differentiated into monocyte-derived Mⲫ, increasing their numbers by sixfold with acute hemin treatment. Hemolysis-driven IFN-I activity also led to the induction of Fc receptor CD64 expression on monocyte and Mⲫ populations, enhancing alloantibody-mediated erythrophagocytosis in SCD both in vivo in mice and in in vitro human cultures. Altogether, these data demonstrate IFN-I response to hemolysis as a novel activation pathway in monocytes and Mⲫ in SCD, opening the possibility for development of IFN-I-based diagnostics and therapeutics against alloantibody-mediated erythrophagocytosis.


Assuntos
Anemia Falciforme/patologia , Eritrócitos/patologia , Hemólise , Interferon-alfa/imunologia , Fagocitose , Anemia Falciforme/sangue , Anemia Falciforme/imunologia , Animais , Células Cultivadas , Eritrócitos/imunologia , Hemólise/imunologia , Humanos , Interferon-alfa/sangue , Isoanticorpos/imunologia , Camundongos , Camundongos Transgênicos
10.
Blood ; 138(20): 1986-1997, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34098576

RESUMO

The erythropoietin receptor (EpoR) has traditionally been thought of as an erythroid-specific gene. Notably, accumulating evidence suggests that EpoR is expressed well beyond erythroid cells. However, the expression of EpoR in non-erythroid cells has been controversial. In this study, we generated EpoR-tdTomato-Cre mice and used them to examine the expression of EpoR in tissue macrophages and hematopoietic cells. We show that in marked contrast to the previously available EpoR-eGFPcre mice, in which a very weak eGFP signal was detected in erythroid cells, tdTomato was readily detectable in both fetal liver (FL) and bone marrow (BM) erythroid cells at all developmental stages and exhibited dynamic changes during erythropoiesis. Consistent with our recent finding that erythroblastic island (EBI) macrophages are characterized by the expression of EpoR, tdTomato was readily detected in both FL and BM EBI macrophages. Moreover, tdTomato was also detected in subsets of hematopoietic stem cells, progenitors, megakaryocytes, and B cells in BM as well as in spleen red pulp macrophages and liver Kupffer cells. The expression of EpoR was further shown by the EpoR-tdTomato-Cre-mediated excision of the floxed STOP sequence. Importantly, EPO injection selectively promoted proliferation of the EpoR-expressing cells and induced erythroid lineage bias during hematopoiesis. Our findings imply broad roles for EPO/EpoR in hematopoiesis that warrant further investigation. The EpoR-tdTomato-Cre mouse line provides a powerful tool to facilitate future studies on EpoR expression and regulation in various non-hematopoietic cells and to conditionally manipulate gene expression in EpoR-expressing cells for functional studies.


Assuntos
Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Receptores da Eritropoetina/genética , Animais , Células-Tronco Hematopoéticas/citologia , Humanos , Integrases/análise , Integrases/genética , Substâncias Luminescentes/análise , Substâncias Luminescentes/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Macrófagos/citologia , Camundongos , Receptores da Eritropoetina/análise , Proteína Vermelha Fluorescente
11.
Blood ; 138(24): 2570-2582, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34329381

RESUMO

Sickle cell disease (SCD) is characterized by hemolytic anemia, which can trigger oxidative stress, inflammation, and tissue injury that contribute to disease complications. Bone marrow mesenchymal stromal cells (MSCs) tightly regulate hematopoietic stem cell (HSC) homeostasis in health and disease, but their functionality in SCD remains unclear. We identified for the first time that murine SCD MSCs have altered gene signatures, reduced stem cell properties, and increased oxidative stress, due in part to hemolysis. Murine SCD MSCs had lower HSC maintenance ability in vitro and in vivo, as manifested by increased HSC mobilization and decreased HSC engraftment after transplant. Activation of Toll-like receptor-4 through p65 in MSCs further contributed to MSC dysfunction. Transfusions led to an improved MSC and HSC oxidative state in SCD mice. Improving the regulation between MSCs and HSCs has vital implications for enhancing clinical HSC transplantation and gene therapy outcomes and for identification of new molecular targets for alleviating SCD complications.


Assuntos
Anemia Falciforme/patologia , Células-Tronco Hematopoéticas/patologia , Células-Tronco Mesenquimais/patologia , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/terapia , Animais , Transfusão de Sangue , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hemólise , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Transcriptoma
12.
Blood ; 137(2): 269-280, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33152749

RESUMO

Red blood cell alloimmunization remains a barrier for safe and effective transfusions in sickle cell disease (SCD), but the associated risk factors remain largely unknown. Intravascular hemolysis, a hallmark of SCD, results in the release of heme with potent immunomodulatory activity, although its effect on SCD humoral response, specifically alloimmunization, remains unclear. Here, we found that cell-free heme suppresses human B-cell plasmablast and plasma cell differentiation by inhibiting the DOCK8/STAT3 signaling pathway, which is critical for B-cell activation, as well as by upregulating heme oxygenase 1 (HO-1) through its enzymatic byproducts, carbon monoxide and biliverdin. Whereas nonalloimmunized SCD B cells were inhibited by exogenous heme, B cells from the alloimmunized group were nonresponsive to heme inhibition and readily differentiated into plasma cells. Consistent with a differential B-cell response to hemolysis, we found elevated B-cell basal levels of DOCK8 and higher HO-1-mediated inhibition of activated B cells in nonalloimmunized compared with alloimmunized SCD patients. To overcome the alloimmunized B-cell heme insensitivity, we screened several heme-binding molecules and identified quinine as a potent inhibitor of B-cell activity, reversing the resistance to heme suppression in alloimmunized patients. B-cell inhibition by quinine occurred only in the presence of heme and through HO-1 induction. Altogether, these data suggest that hemolysis can dampen the humoral B-cell response and that B-cell heme responsiveness maybe a determinant of alloimmunization risk in SCD. By restoring B-cell heme sensitivity, quinine may have therapeutic potential to prevent and inhibit alloimmunization in SCD patients.


Assuntos
Anemia Falciforme/terapia , Linfócitos B/imunologia , Heme/imunologia , Hemólise/imunologia , Reação Transfusional/imunologia , Anemia Hemolítica Autoimune/imunologia , Transfusão de Sangue , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Isoanticorpos/imunologia , Ativação Linfocitária/imunologia
13.
Blood ; 138(17): 1615-1627, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34036344

RESUMO

Histone deacetylases (HDACs) are a group of enzymes that catalyze the removal of acetyl groups from histone and nonhistone proteins. HDACs have been shown to have diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. This study showed that, of the 11 classic HDAC family members, 6 (HDAC1, -2, -3, and HDAC5, -6, -7) are expressed in human erythroid cells, with HDAC5 most significantly upregulated during terminal erythroid differentiation. Knockdown of HDAC5 by either short hairpin RNA or small interfering RNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, although acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late-stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA sequencing analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome-wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation, and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.


Assuntos
Células Eritroides/citologia , Eritropoese , Histona Desacetilases/genética , Apoptose , Eritroblastos/citologia , Eritroblastos/metabolismo , Células Eritroides/metabolismo , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Regulação para Cima
14.
Haematologica ; 108(9): 2487-2502, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021526

RESUMO

Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 (PRC2) that catalyzes H3K27 tri-methylation. Aberrant expression and loss-of-function mutations of EZH2 have been demonstrated to be tightly associated with the pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as myelodysplastic syndrome (MDS). However, the function and mechanism of EZH2 in human erythropoiesis still remains largely unknown. Here, we demonstrated that EZH2 regulates human erythropoiesis in a stage-specific, dual-function manner by catalyzing histone and non-histone methylation. During the early erythropoiesis, EZH2 deficiency caused cell cycle arrest in the G1 phase, which impaired cell growth and differentiation. Chromatin immunoprecipitation sequencing and RNA sequencing discovered that EZH2 knockdown caused a reduction of H3K27me3 and upregulation of cell cycle proteindependent kinase inhibitors. In contrast, EZH2 deficiency led to the generation of abnormal nuclear cells and impaired enucleation during the terminal erythropoiesis. Interestingly, EZH2 deficiency downregulated the methylation of HSP70 by directly interacting with HSP70. RNA-sequencing analysis revealed that the expression of AURKB was significantly downregulated in response to EZH2 deficiency. Furthermore, treatment with an AURKB inhibitor and small hairpin RNAmediated AURKB knockdown also led to nuclear malformation and decreased enucleation efficiency. These findings strongly suggest that EZH2 regulates terminal erythropoiesis through a HSP70 methylation-AURKB axis. Our findings have implications for improved understanding of ineffective erythropoiesis with EZH2 dysfunction.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Eritropoese , Histonas , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Eritropoese/genética , Histonas/metabolismo , Metilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
15.
J Cell Mol Med ; 26(8): 2404-2416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35249258

RESUMO

Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self-renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS-derived erythroid cells is limited and the enucleation of ES/iPS-derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell-derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell-derived orthochromatic erythroblasts (ES-ortho), we found the chromatin of ES-ortho was less condensed than that of CB CD34+ cell-derived orthochromatic erythroblasts (CB-ortho). At the molecular level, both RNA-seq and ATAC-seq analyses revealed that pathways involved in chromatin modification were down-regulated in ES-ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES-ortho compared to that in CB-ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell-derived erythroid cells and may help to improve ex vivo RBC production from stem cells.


Assuntos
Eritropoese , Sangue Fetal , Antígenos CD34/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Eritroides , Humanos
16.
Biophys J ; 120(17): 3588-3599, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352252

RESUMO

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells after duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αI-spectrin has moderate affinity for ßI-spectrin, whereas αII-spectrin, expressed in nonerythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for ßI-spectrin. It has been hypothesized that this adaptation allows for rapid make and break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIßI presented normal hematologic parameters yet showed increased thermostability, and their membranes were significantly less deformable; under low shear forces, they displayed tumbling behavior rather than tank treading. The membrane skeleton is more stable with αIIßI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher-affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease) can support the membrane properties required for effective tissue oxygenation in circulation.


Assuntos
Deformação Eritrocítica , Espectrina , Animais , Evolução Biológica , Membrana Eritrocítica , Eritrócitos , Camundongos
17.
Blood ; 134(7): 579-590, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076443

RESUMO

Painful vaso-occlusive crisis (VOC) is the most common complication of sickle cell disease (SCD). Increasing evidence suggests that vaso-occlusion is initiated by increased adherence of sickle red blood cells (RBCs) to the vascular endothelium. Thus, the mechanisms that remove endothelial-attached sickle RBCs from the microvasculature are expected to be critical for optimal blood flow and prevention of VOC in SCD. We hypothesized that patrolling monocytes (PMos), which protect against vascular damage by scavenging cellular debris, could remove endothelial-adherent sickle RBCs and ameliorate VOC in SCD. We detected RBC (GPA+)-engulfed material in circulating PMos of patients with SCD, and their frequency was further increased during acute crisis. RBC uptake by PMos was specific to endothelial-attached sickle, but not control, RBCs and occurred mostly through ICAM-1, CD11a, and CD18. Heme oxygenase 1 induction, by counteracting the cytotoxic effects of engulfed RBC breakdown products, increased PMo viability. In addition, transfusions, by lowering sickle RBC uptake, improved PMo survival. Selective depletion of PMos in Townes sickle mice exacerbated vascular stasis and tissue damage, whereas treatment with muramyl dipeptide (NOD2 ligand), which increases PMo mass, reduced stasis and SCD associated organ damage. Altogether, these data demonstrate a novel mechanism for removal of endothelial attached sickle RBCs mediated by PMos that can protect against VOC pathogenesis, further supporting PMos as a promising therapeutic target in SCD VOC.


Assuntos
Anemia Falciforme/complicações , Endotélio Vascular/patologia , Eritrócitos/patologia , Monócitos/citologia , Doenças Vasculares/etiologia , Anemia Falciforme/patologia , Animais , Adesão Celular , Linhagem Celular , Humanos , Camundongos , Monócitos/patologia , Doenças Vasculares/patologia
18.
Blood ; 134(5): 480-491, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101625

RESUMO

The erythroblastic island (EBI), composed of a central macrophage and surrounding erythroid cells, was the first hematopoietic niche discovered. The identity of EBI macrophages has thus far remained elusive. Given that Epo is essential for erythropoiesis and that Epor is expressed in numerous nonerythroid cells, we hypothesized that EBI macrophages express Epor so that Epo can act on both erythroid cells and EBI macrophages simultaneously to ensure efficient erythropoiesis. To test this notion, we used Epor-eGFPcre knockin mouse model. We show that in bone marrow (BM) and fetal liver, a subset of macrophages express Epor-eGFP. Imaging flow cytometry analyses revealed that >90% of native EBIs comprised F4/80+Epor-eGFP+ macrophages. Human fetal liver EBIs also comprised EPOR+ macrophages. Gene expression profiles of BM F4/80+Epor-eGFP+ macrophages suggest a specialized function in supporting erythropoiesis. Molecules known to be important for EBI macrophage function such as Vcam1, CD169, Mertk, and Dnase2α were highly expressed in F4/80+Epor-eGFP+ macrophages compared with F4/80+Epor-eGFP- macrophages. Key molecules involved in iron recycling were also highly expressed in BM F4/80+Epor-eGFP+ macrophages, suggesting that EBI macrophages may provide an iron source for erythropoiesis within this niche. Thus, we have characterized EBI macrophages in mouse and man. Our findings provide important resources for future studies of EBI macrophage function during normal as well as disordered erythropoiesis in hematologic diseases such as thalassemia, polycythemia vera, and myelodysplastic syndromes.


Assuntos
Eritroblastos/metabolismo , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Transcriptoma , Animais , Biomarcadores , Biologia Computacional/métodos , Eritropoese/genética , Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Monócitos/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Nicho de Células-Tronco/genética , Estresse Fisiológico
19.
Blood ; 132(22): 2406-2417, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30254129

RESUMO

Myelodysplastic syndromes (MDSs) are clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis. Anemia is the defining cytopenia of MDS patients, yet the molecular mechanisms for dyserythropoiesis in MDSs remain to be fully defined. Recent studies have revealed that heterozygous loss-of-function mutation of DNA dioxygenase TET2 is 1 of the most common mutations in MDSs and that TET2 deficiency disturbs erythroid differentiation. However, mechanistic insights into the role of TET2 on disordered erythropoiesis are not fully defined. Here, we show that TET2 deficiency leads initially to stem cell factor (SCF)-dependent hyperproliferation and impaired differentiation of human colony-forming unit-erythroid (CFU-E) cells, which were reversed by a c-Kit inhibitor. We further show that this was due to increased phosphorylation of c-Kit accompanied by decreased expression of phosphatase SHP-1, a negative regulator of c-Kit. At later stages, TET2 deficiency led to an accumulation of a progenitor population, which expressed surface markers characteristic of normal CFU-E cells but were functionally different. In contrast to normal CFU-E cells that require only erythropoietin (EPO) for proliferation, these abnormal progenitors required SCF and EPO and exhibited impaired differentiation. We termed this population of progenitors "marker CFU-E" cells. We further show that AXL expression was increased in marker CFU-E cells and that the increased AXL expression led to increased activation of AKT and ERK. Moreover, the altered proliferation and differentiation of marker CFU-E cells were partially rescued by an AXL inhibitor. Our findings document an important role for TET2 in erythropoiesis and have uncovered previously unknown mechanisms by which deficiency of TET2 contributes to ineffective erythropoiesis.


Assuntos
Proteínas de Ligação a DNA/genética , Células Precursoras Eritroides/patologia , Mutação com Perda de Função , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Dioxigenases , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Regulação para Cima
20.
Haematologica ; 105(9): 2240-2249, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054049

RESUMO

ß-thalassemia major (ß-TM) is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of hemoglobin, leading to the accumulation of free a-globin chains that aggregate and cause ineffective erythropoiesis. We have previously demonstrated that terminal erythroid maturation requires a transient activation of caspase-3 and that the chaperone Heat Shock Protein 70 (HSP70) accumulates in the nucleus to protect GATA-1 transcription factor from caspase-3 cleavage. This nuclear accumulation of HSP70 is inhibited in human ß-TM erythroblasts due to HSP70 sequestration in the cytoplasm by free a-globin chains, resulting in maturation arrest and apoptosis. Likewise, terminal maturation can be restored by transduction of a nuclear-targeted HSP70 mutant. Here we demonstrate that in normal erythroid progenitors, HSP70 localization is regulated by the exportin-1 (XPO1), and that treatment of ß-thalassemic erythroblasts with an XPO1 inhibitor increased the amount of nuclear HSP70, rescued GATA-1 expression and improved terminal differentiation, thus representing a new therapeutic option to ameliorate ineffective erythropoiesis of ß-TM.


Assuntos
Carioferinas , Receptores Citoplasmáticos e Nucleares , Talassemia beta , Diferenciação Celular , Eritroblastos , Eritropoese , Humanos , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA