Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genomics ; 114(6): 110517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306958

RESUMO

Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium­calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.


Assuntos
Agave , Agave/genética , Brasil , Aspergillus/genética
2.
Virol J ; 15(1): 184, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477549

RESUMO

BACKGROUND: Hevea brasiliensis is an important commercial crop due to the high quality of the latex it produces; however, little is known about viral infections in this plant. The only virus described to infect H. brasiliensis until now is a Carlavirus, which was described more than 30 years ago. Virus-derived small interfering RNA (vsiRNAs) are the product of the plant's antiviral defense triggered by dsRNA viral intermediates generated, during the replication cycle. These vsiRNAs are complementar to viral genomes and have been widely used to identify and characterize viruses in plants. METHODS: In the present study, we investigated the virome of leaf and sapwood samples from native H. brasiliensis trees collected in two geographic areas in the Brazilian Amazon. Small RNA (sRNA) deep sequencing and bioinformatic tools were used to assembly, identify and characterize viral contigs. Subsequently, PCR amplification techniques were performed to experimentally verify the presence of the viral sequences. Finally, the phylogenetic relationship of the putative new virus with related viral genomes was analyzed. RESULTS: Our strategy allowed the identification of 32 contigs with high similarity to viral reference genomes, from which 23 exhibited homology to viruses of the Tymoviridae family. The reads showed a predominant size distribution at 21 nt derived from both strands, which was consistent with the vsiRNAs profile. The presence and genome position of the viral contigs were experimentally confirmed using droplet digital PCR amplifications. A 1913 aa long fragment was obtained and used to infer the phylogenetic relationship of the putative new virus, which indicated that it is taxonomically related to the Grapevine fleck virus, genus Maculavirus. The putative new virus was named Hevea brasiliensis virus (HBrV) in reference to its host. CONCLUSION: The methodological strategy applied here proved to be efficient in detecting and confirming the presence of new viral sequences on a 'very difficult to manage' sample. This is the second time that viral sequences, that could be ascribed as a putative novel virus, associated to the rubber tree has been identified.


Assuntos
Hevea/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Interferente Pequeno/genética , Perfilação da Expressão Gênica , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase , RNA Viral/genética , Análise de Sequência de RNA
3.
BMC Microbiol ; 17(1): 42, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228107

RESUMO

BACKGROUND: Fungi are among the most abundant and diverse organisms on Earth. However, a substantial amount of the species diversity, relationships, habitats, and life strategies of these microorganisms remain to be discovered and characterized. One important factor hindering progress is the difficulty in correctly identifying fungi. Morphological and molecular characteristics have been applied in such tasks. Later, DNA barcoding has emerged as a new method for the rapid and reliable identification of species. The nrITS region is considered the universal barcode of Fungi, and the ITS1 and ITS2 sub-regions have been applied as metabarcoding markers. In this study, we performed a large-scale analysis of all the available Basidiomycota sequences from GenBank. We carried out a rigorous trimming of the initial dataset based in methodological principals of DNA Barcoding. Two different approaches (PCI and barcode gap) were used to determine the performance of the complete ITS region and sub-regions. RESULTS: For most of the Basidiomycota genera, the three genomic markers performed similarly, i.e., when one was considered a good marker for the identification of a genus, the others were also; the same results were observed when the performance was insufficient. However, based on barcode gap analyses, we identified genomic markers that had a superior identification performance than the others and genomic markers that were not indicated for the identification of some genera. Notably, neither the complete ITS nor the sub-regions were useful in identifying 11 of the 113 Basidiomycota genera. The complex phylogenetic relationships and the presence of cryptic species in some genera are possible explanations of this limitation and are discussed. CONCLUSIONS: Knowledge regarding the efficiency and limitations of the barcode markers that are currently used for the identification of organisms is crucial because it benefits research in many areas. Our study provides information that may guide researchers in choosing the most suitable genomic markers for identifying Basidiomycota species.


Assuntos
Basidiomycota/genética , Basidiomycota/isolamento & purificação , Código de Barras de DNA Taxonômico/métodos , DNA Espaçador Ribossômico/genética , Marcadores Genéticos/genética , Filogenia , Basidiomycota/classificação , Biodiversidade , DNA Fúngico , Bases de Dados de Ácidos Nucleicos , Fungos/genética , Genes Fúngicos/genética , Tipagem Molecular/métodos , Técnicas de Tipagem Micológica/métodos , RNA Fúngico/genética , Análise de Sequência de DNA , Especificidade da Espécie
4.
FEMS Yeast Res ; 14(2): 289-301, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119212

RESUMO

In this study, the phylogenetic relationships between cachaça strains of Saccharomyces cerevisiae isolated from different geographical areas in Brazil were obtained on the basis of sequences of one mitochondrial (COX2) and three nuclear (EGT2, CAT8, and BRE5) genes. This analysis allowed us to demonstrate that different types of strains coexist in cachaça fermentations: wine strains, exhibiting alleles related or identical to those present in European wine strains; native strains, containing alleles similar to those found in strains isolated from traditional fermentations from Latin America, North America, Malaysian, Japan, or West Africa; and their intraspecific hybrids or 'mestizo' strains, heterozygous for both types of alleles. Wine strains and hybrids with high proportions of wine-type alleles predominate in southern and southeastern Brazil, where cachaça production coexists with winemaking. The high frequency of 'wine-type' alleles in these regions is probably due to the arrival of wine immigrant strains introduced from Europe in the nearby wineries due to the winemaking practices. However, in north and northeastern states, regions less suited or not suited for vine growing and winemaking, wine-type alleles are much less frequent because 'mestizo' strains with intermediate or higher proportions of 'native-type' alleles are predominant.


Assuntos
Fermentação , Recombinação Genética , Saccharomyces cerevisiae/classificação , Alelos , Sequência de Bases , Brasil , Genes Fúngicos , Variação Genética , Genótipo , Geografia , Dados de Sequência Molecular , Filogeografia , Polimorfismo Genético , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Alinhamento de Sequência , Vinho
5.
Antonie Van Leeuwenhoek ; 106(6): 1259-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315101

RESUMO

Four strains of lactic acid bacteria isolated from cachaça and alcohol fermentation vats in Brazil were characterised in order to determine their taxonomic position. Phylogenetic analysis revealed that they belong to the genus Oenococcus and should be distinguished from their closest neighbours. The 16S rRNA gene sequence similarity against the type strains of the other two species of the genus was below 94.76 % (Oenococcus kitaharae) and 94.62 % (Oenococcus oeni). The phylogeny based on pheS gene sequences also confirmed the position of the new taxon. DNA-DNA hybridizations based on in silico genome-to-genome comparison, Average Amino Acid Identity, Average Nucleotide Identity and Karlin genomic signature confirmed the novelty of the taxon. Distinctive phenotypic characteristics are the ability to metabolise sucrose but not trehalose. The name Oenococcus alcoholitolerans sp. nov. is proposed for this taxon, with the type strain UFRJ-M7.2.18(T) ( = CBAS474(T) = LMG27599(T)). In addition, we have determined a draft genome sequence of the type strain.


Assuntos
Etanol/metabolismo , Microbiologia de Alimentos , Oenococcus/classificação , Oenococcus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Brasil , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fermentação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Heliyon ; 10(7): e28449, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689961

RESUMO

Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.

7.
Int J Syst Evol Microbiol ; 63(Pt 3): 1169-1173, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23203623

RESUMO

Six strains of two novel yeast species were isolated from sugar-cane juice and fermentation vats of cachaça production in Brazil. The sequences of the D1/D2 domains of the large-subunit rRNA gene showed that these species belong to the Wickerhamiella clade, and their closest described relative in terms of sequence similarity is Candida (iter. nom. Wickerhamiella) drosophilae. The type strain of Wickerhamiella cachassae sp. nov. is UFMG-D5L7(T) ( = CBS 12587(T)  = CBMAI 1469(T)) and the type strain of Wickerhamiella dulcicola sp. nov. is UFMG-TOL15(T) ( = CBS 12588(T)  = CBMAI 1468(T)).


Assuntos
Bebidas Alcoólicas/microbiologia , Microbiologia de Alimentos , Filogenia , Saccharomycetales/classificação , Brasil , DNA Fúngico/genética , Fermentação , Genes de RNAr , Dados de Sequência Molecular , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
8.
J Fungi (Basel) ; 8(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205897

RESUMO

Trametes villosa is a wood-decaying fungus with great potential to be used in the bioconversion of agro-industrial residues and to obtain high-value-added products, such as biofuels. Nonetheless, the lack of high-quality genomic data hampers studies investigating genetic mechanisms and metabolic pathways in T. villosa, hindering its application in industry. Herein, applying a hybrid assembly pipeline using short reads (Illumina HiSeq) and long reads (Oxford Nanopore MinION), we obtained a high-quality genome for the T. villosa CCMB561 and investigated its genetic potential for lignocellulose breakdown. The new genome possesses 143 contigs, N50 of 1,009,271 bp, a total length of 46,748,415 bp, 14,540 protein-coding genes, 22 secondary metabolite gene clusters, and 426 genes encoding Carbohydrate-Active enzymes. Our CAZome annotation and comparative genomic analyses of nine Trametes spp. genomes revealed T. villosa CCMB561 as the species with the highest number of genes encoding lignin-modifying enzymes and a wide array of genes encoding proteins for the breakdown of cellulose, hemicellulose, and pectin. These results bring to light the potential of this isolate to be applied in the bioconversion of lignocellulose and will support future studies on the expression, regulation, and evolution of genes, proteins, and metabolic pathways regarding the bioconversion of lignocellulosic residues.

9.
J Fungi (Basel) ; 8(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448604

RESUMO

The rubber tree, Hevea brasiliensis, is a neotropical Amazonian species. Despite its high economic value and fungi associated with native individuals, in its original area in Brazil, it has been scarcely investigated and only using culture-dependent methods. Herein, we integrated in silico approaches with novel field/experimental approaches and a case study of shotgun metagenomics and small RNA metatranscriptomics of an adult individual. Scientific literature, host fungus, and DNA databases are biased to fungal taxa, and are mainly related to rubber tree diseases and in non-native ecosystems. Metabarcoding retrieved specific phyllospheric core fungal communities of all individuals, adults, plantlets, and leaves of the same plant, unravelling hierarchical structured core mycobiomes. Basidiomycotan yeast-like fungi that display the potential to produce antifungal compounds and a complex of non-invasive ectophytic parasites (Sooty Blotch and Flyspeck fungi) co-occurred in all samples, encompassing the strictest core mycobiome. The case study of the same adult tree (previously studied using culture-dependent approach) analyzed by amplicon, shotgun metagenomics, and small RNA transcriptomics revealed a high relative abundance of insect parasite-pathogens, anaerobic fungi and a high expression of Trichoderma (a fungal genus long reported as dominant in healthy wild rubber trees), respectively. Altogether, our study unravels new and intriguing information/hypotheses of the foliar mycobiome of native H. brasiliensis, which may also occur in other native Amazonian trees.

10.
Antonie Van Leeuwenhoek ; 99(3): 635-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21136162

RESUMO

Eight strains of a novel yeast species were isolated from rotting wood and wood-boring insects in Atlantic Rain Forest ecosystems in Brazil. Sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that the yeast belongs to the Scheffersomyces clade and that it is related to Candida lignicola and Candida coipomoensis. The new species was isolated from rotting wood of three different localities and a wood-boring insect suggesting that these substrates are its ecological niche. This new yeast species is able to assimilate cellobiose and other compounds related to rotting wood. Strong fermentation of cellobiose in Durham tubes was observed for the strains of this new yeast. The new species produced an intracellular ß-glucosidase responsible for cellobiose hydrolysis. The novel species, Candida queiroziae sp. nov., is proposed to accommodate these isolates. The type strain of C. queiroziae is UFMG-CLM 5.1(T) (=CBS 11853(T) = NRRL Y-48722(T)).


Assuntos
Candida/isolamento & purificação , Candida/metabolismo , Celobiose/metabolismo , Árvores , Candida/enzimologia , Fermentação , Análise de Sequência de DNA , beta-Glucosidase/metabolismo
11.
Mitochondrion ; 58: 1-13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582235

RESUMO

The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.


Assuntos
Basidiomycota/genética , Genes Fúngicos , Genoma Mitocondrial , Polyporaceae/genética , Códon , DNA Mitocondrial/genética , Íntrons , Fases de Leitura Aberta
12.
Front Microbiol ; 11: 765, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411111

RESUMO

The order Hypocreales (Ascomycota) is composed of ubiquitous and ecologically diverse fungi such as saprobes, biotrophs, and pathogens. Despite their phylogenetic relationship, these species exhibit high variability in biomolecules production, lifestyle, and fitness. The mitochondria play an important role in the fungal biology, providing energy to the cells and regulating diverse processes, such as immune response. In spite of its importance, the mechanisms that shape fungal mitogenomes are still poorly understood. Herein, we investigated the variability and evolution of mitogenomes and its relationship with the divergence time using the order Hypocreales as a study model. We sequenced and annotated for the first time Trichoderma harzianum mitochondrial genome (mtDNA), which was compared to other 34 mtDNAs species that were publicly available. Comparative analysis revealed a substantial structural and size variation on non-coding mtDNA regions, despite the conservation of copy number, length, and structure of protein-coding elements. Interestingly, we observed a highly significant correlation between mitogenome length, and the number and size of non-coding sequences in mitochondrial genome. Among the non-coding elements, group I and II introns and homing endonucleases genes (HEGs) were the main contributors to discrepancies in mitogenomes structure and length. Several intronic sequences displayed sequence similarity among species, and some of them are conserved even at gene position, and were present in the majority of mitogenomes, indicating its origin in a common ancestor. On the other hand, we also identified species-specific introns that advocate for the origin by different mechanisms. Investigation of mitochondrial gene transfer to the nuclear genome revealed that nuclear copies of the nad5 are the most frequent while atp8, atp9, and cox3 could not be identified in any of the nuclear genomes analyzed. Moreover, we also estimated the divergence time of each species and investigated its relationship with coding and non-coding elements as well as with the length of mitogenomes. Altogether, our results demonstrated that introns and HEGs are key elements on mitogenome shaping and its presence on fast-evolving mtDNAs could be mostly explained by its divergence time, although the intron sharing profile suggests the involvement of other mechanisms on the mitochondrial genome evolution, such as horizontal transference.

13.
PeerJ ; 8: e10487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344092

RESUMO

The true myrtle, Myrtus communis, is a small perennial evergreen tree that occurs in Europe, Africa, and Asia with a circum-Mediterranean geographic distribution. Unfortunately, the Mediterranean Forests, where M. communis occurs, are critically endangered and are currently restricted to small fragmented areas in protected conservation units. In the present work, we performed, for the first time, a metabarcoding study on the spatial variation of fungal community structure in the foliar endophytome of this endemic plant of the Mediterranean biome, using bipartite network analysis as a model. The local bipartite network of Myrtus communis individuals and their foliar endophytic fungi is very low connected, with low nestedness, and moderately high specialization and modularity. Similar network patterns were also retrieved in both culture-dependent and amplicon metagenomics of foliar endophytes in distinct arboreal hosts in varied biomes. Furthermore, the majority of putative fungal endophytes species were basidiomycete woody saprotrophs of the orders Polyporales, Agaricales, and Hymenochaetales. Altogether, these findings suggest a possible adaptation of these wood-decaying fungi to cope with moisture limitation and spatial scarcity of their primary substrate (dead wood), which are totally consistent with the predictions of the viaphytism hypothesis that wood-decomposing fungi inhabit the internal leaf tissue of forest trees in order to enhance dispersal to substrates on the forest floor, by using leaves as vectors and as refugia, during periods of environmental stress.

14.
Sci Rep ; 9(1): 12685, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481728

RESUMO

Many aspects of the dynamics of tropical fungal endophyte communities are poorly known, including the influence of host taxonomy, host life stage, host defence, and host geographical distance on community assembly and composition. Recent fungal endophyte research has focused on Hevea brasiliensis due to its global importance as the main source of natural rubber. However, almost no data exist on the fungal community harboured within other Hevea species or its sister genus Micrandra. In this study, we expanded sampling to include four additional Hevea spp. and two Micrandra spp., as well as two host developmental stages. Through culture-dependent and -independent (metagenomic) approaches, a total of 381 seedlings and 144 adults distributed across three remote areas within the Peruvian Amazon were sampled. Results from both sampling methodologies indicate that host developmental stage had a greater influence in community assemblage than host taxonomy or locality. Based on FunGuild ecological guild assignments, saprotrophic and mycotrophic endophytes were more frequent in adults, while plant pathogens were dominant in seedlings. Trichoderma was the most abundant genus recovered from adult trees while Diaporthe prevailed in seedlings. Potential explanations for that disparity of abundance are discussed in relation to plant physiological traits and community ecology hypotheses.


Assuntos
Fungos/isolamento & purificação , Hevea/microbiologia , Micobioma , Biodiversidade , Brasil , Hibridização Genômica Comparativa , DNA Fúngico/química , DNA Fúngico/metabolismo , Fungos/genética , Hevea/crescimento & desenvolvimento , Plântula/microbiologia , Análise de Sequência de DNA
15.
J Proteomics ; 203: 103390, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129267

RESUMO

Basidiomycotan fungi play significant roles in the biogeochemical cycle of carbon as wood decomposers and are used in the food industry for mushroom production and in biotechnology for the production of diverse bioactive compounds and bioremediation. The correct identification of basidiomycotan isolates is crucial for understanding their biology and being able to expand their applications. Currently, the identification of these organisms is performed by analyzing morphological and genomic characteristics, primarily those based on DNA biomarkers. Despite their efficiency, such methods require considerable expertise and are both time-consuming and error-prone (multistep workflow). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged in the last decade as an accurate, fast, and powerful alternative for the identification of microorganisms. MALDI-TOF MS has been widely applied for the identification and taxonomical characterization of both bacteria and ascomycotan fungi from clinical origins. However, species of Basidiomycota have been poorly evaluated using this method. In the present study, we assessed the performance of MALDI-TOF MS using basidiomycotan isolates of two distinct taxonomical families: Polyporaceae and Hymenochaetaceae. Using a simple protocol, which eliminates the protein extraction step, we obtained high-quality mass spectra data and demonstrated that this method is efficient for the discrimination of isolates at the species level. SIGNIFICANCE: In this study, the MALDI-TOF mass spectrometry was employed to test its accuracy on the recognition of fungal species with high biotechnological and environmental interest. Using a simple and fast protocol, we obtained high-quality mass-spectra (protein fingerprinting) and proved that MALDI-TOF MS is sufficiently robust to the identification at species level and to evaluate the relationships among the isolates of the polyporoid and hymenochaetoid clades (Basidiomycota).


Assuntos
Basidiomycota/isolamento & purificação , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Classificação/métodos , Fungos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Microb Cell Fact ; 7: 4, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18304329

RESUMO

BACKGROUND: Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. RESULTS: We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. CONCLUSION: Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.

17.
Sci Rep ; 8(1): 16151, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385829

RESUMO

Hevea brasiliensis is a native hyperdiverse tree species in the Amazon basin with great economic importance since it produces the highest quality natural rubber. H. brasiliensis, in its natural habitat, may harbor fungal endophytes that help defend against phytopathogenic fungi. In this work, we investigated the fungal endophytic communities in two pristine areas in Eastern Amazon (Anavilhanas National Park - ANP and Caxiuanã National Forest - CNF) at different spatial scales: regional, local, individual (tree), and intra-individual (leaflet). Using a culture-based approach, 210 fungal endophytes were isolated from 240 sampling units and assigned to 46 distinct MOTUs based on sequencing of the nrITS DNA. The community compositions of the endophytomes are different at both regional and local scales, dominated by very few taxa and highly skewed toward rare taxa, with many endophytes infrequently isolated across hosts in sampled space. Colletotrichum sp. 1, a probably latent pathogen, was the most abundant endophytic putative species and was obtained from all individual host trees in both study areas. Although the second most abundant putative species differed between the two collection sites, Clonostachys sp. 1 and Trichoderma sp. 1, they are phylogenetically related (Hypocreales) mycoparasites. Thus, they probably exhibit the same ecological function in the foliar endosphere of rubber tree as antagonists of its fungal pathogens.


Assuntos
Ecologia , Endófitos/genética , Hevea/microbiologia , Filogenia , Biodiversidade , Brasil , DNA Fúngico/genética , Ecossistema , Endófitos/patogenicidade , Fungos/genética , Fungos/patogenicidade , Hevea/genética , Micobioma/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia
18.
Data Brief ; 18: 1581-1587, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904660

RESUMO

Herein, we present the draft genome of Trametes villosa isolate CCMB561, a wood-decaying Basidiomycota commonly found in tropical semiarid climate. The genome assembly was 57.98 Mb in size with an L50 of 691. A total of 16,711 putative protein-encoding genes was predicted, including 590 genes coding for carbohydrate-active enzymes (CAZy), directly involved in the decomposition of lignocellulosic materials. This is the first genome of this species of high interest in bioenergy research. The draft genome of Trametes villosa isolate CCMB561 will provide an important resource for future investigations in biofuel production, bioremediation and other green technologies.

19.
Biochem Mol Biol Educ ; 42(1): 68-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24167006

RESUMO

The huge increase in data being produced in the genomic era has produced a need to incorporate computers into the research process. Sequence generation, its subsequent storage, interpretation, and analysis are now entirely computer-dependent tasks. Universities from all over the world have been challenged to seek a way of encouraging students to incorporate computational and bioinformatics skills since undergraduation in order to understand biological processes. The aim of this article is to report the experience of awakening students' interest in bioinformatics tools during a course focused on comparative modeling of proteins. The authors start by giving a full description of the course environmental context and students' backgrounds. Then they detail each class and present a general overview of the protein modeling protocol. The positive and negative aspects of the course are also reported, and some of the results generated in class and in projects outside the classroom are discussed. In the last section of the article, general perspectives about the course from students' point of view are given. This work can serve as a guide for professors who teach subjects for which bioinformatics tools are useful and for universities that plan to incorporate bioinformatics into the curriculum.


Assuntos
Biologia Computacional/educação , Capacitação de Usuário de Computador/métodos , Capacitação de Usuário de Computador/normas , Modelos Moleculares , Proteínas , Humanos
20.
J Food Sci ; 79(4): C476-83, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24712492

RESUMO

The choice of fermentation system during cachaça production can greatly influence the chemical composition of the beverage. In this work, Saccharomyces cerevisiae strains were selected based on fermentative properties and used as starters to produce alembic cachaça. In distillery scale production, the selected yeast strains exhibited greater adaptiblity to the fermentation environment and hence remained predominant throughout the process. Electrospray ionization mass spectrometry in the negative ion mode revealed that most of the compounds present in the must are different from those formed in the distillate for both cachaças obtained from spontaneous and selected strains. However, beverages produced using selected strains showed greater similarity in chemical profiles than those produced from spontaneous strain fermentation. Moreover, a smaller number of ions were detected in beverages produced by selected strain than from spontaneous strain fermentation. Our results indicate that the selected S. cerevisiae strains evaluated are able to produce cachaças less subject to variation in chemical composition. This could potentially improve brand consistency and thus commercial viability, particularly in the international market.


Assuntos
Bebidas Alcoólicas/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Saccharum , Bebidas Alcoólicas/microbiologia , Brasil , Humanos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA