Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Sci Food Agric ; 103(13): 6219-6232, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37145100

RESUMO

BACKGROUND: Mycoplasma hyorhinis is a prevalent respiratory pathogen in swine, causing significant economic loss to pig producers. There is growing evidence that respiratory pathogen infections have a large impact on intestinal microecology. To study the effect of M. hyorhinis infection on gut microbial composition and metabolome profile, pigs were infected with M. hyorhinis. Metagenomic sequencing analysis was performed of fecal samples and a liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of gut digesta was made. RESULTS: Pigs infected with M. hyorhinis had enriched Sutterella and Mailhella, and depleted Dechloromonas, Succinatimonas, Campylobacter, Blastocystis, Treponema, and Megasphaera. The pigs infected with M. hyorhinis also had greater abundances of bacterium_0_1xD8_71, Ruminococcus_sp__CAG_353, Firmicutes_bacterium_CAG_194, Firmicutes_bacterium_CAG_534, bacterium_1xD42_87, and lower abundances of Chlamydia_suis, Megasphaera_elsdenii, Treponema_porcinum, Bacteroides_sp__CAG_1060, Faecalibacterium_prausnitzii. Metabolomic analysis revealed that some lipids and lipid-like molecules increased in the small intestine, whereas most lipids and lipid-like molecule metabolites decreased in the large intestine. These altered metabolites induce changes in intestinal sphingolipid metabolism, amino acid metabolism, and thiamine metabolism. CONCLUSION: These findings demonstrate that infection with M. hyorhinis can alter the gut microbial composition and metabolite structure in pigs, which may further affect amino acid metabolism and lipid metabolism in the intestine. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Infecções por Mycoplasma , Mycoplasma hyorhinis , Doenças dos Suínos , Suínos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metaboloma , Aminoácidos , Lipídeos
2.
BMC Microbiol ; 21(1): 327, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823476

RESUMO

BACKGROUND: Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. METHODS: This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. RESULTS: A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6')-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. CONCLUSION: The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.


Assuntos
Antibacterianos/farmacologia , Listeria/efeitos dos fármacos , Listeria/patogenicidade , Matadouros/estatística & dados numéricos , Animais , China , Farmacorresistência Bacteriana , Inocuidade dos Alimentos , Humanos , Listeria/classificação , Listeria/genética , Carne/microbiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Suínos/microbiologia , Virulência
3.
Microb Pathog ; 136: 103659, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31398528

RESUMO

For effective use of phages as antimicrobial agents for controlling multidrug resistant S. Pullorum, it is important to understand phage biology. A lytic S. Pullorum phage was isolated and characterized from chicken feces, and its whole genome was sequenced and analyzed. A new lytic phage-vB_SPuM_SP116 (in brief SP116)- isolated and characterized using S. Pullorum SPu-116 as its host belongs to Myoviridae A1 group. Phage SP116 had a lytic effect on 27 of 37 (72.9%) different serotypes of clinical Salmonella strains. It showed a high bactericidal activity in killing all pathogens in cultures containing 5 × 105 cfu/mL and achieved more than 6.58 and 5.97 log unit reductions in cultures containing 5 × 106 cfu/mL and 5 × 107 cfu/mL, respectively. The one-step growth curve showed that the burst size was up to 118 pfu/bacterial cell. Complete genome sequence analysis revealed a linear, double-stranded DNA genome of 87,510 bp with an average G + C content of 38.84%, including 128 predicted open reading frames (ORFs) and 22 tRNA genes. SP116 was classified as a Felix O1 virus based upon the general phage characterization and the genomic information. Regarding its high efficacy in preventing especially S. Pullorum infection and its lack of any bacterial virulence, antimicrobial resistance, and lysogenesis genes, it could be a potential alternative candidate for the treatment of S. Pullorum infections.


Assuntos
Especificidade de Hospedeiro , Myoviridae/genética , Myoviridae/ultraestrutura , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Salmonella enterica/virologia , Animais , Bacteriólise , Composição de Bases , Galinhas , Contagem de Colônia Microbiana , DNA Viral/química , DNA Viral/genética , Fezes/virologia , Genoma Viral , Viabilidade Microbiana , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fases de Leitura Aberta , Terapia por Fagos , RNA de Transferência/genética , Infecções por Salmonella/terapia , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/fisiologia , Sequenciamento Completo do Genoma
4.
Microb Pathog ; 131: 175-180, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30946984

RESUMO

BACKGROUND: Shigella dysenteriae is one of the members of Shigella genus which was the main responsible of different Shigellosis outbreaks worldwide. The increasing consumption of antibiotics has led to the emergence and spreading of antibiotic-resistant strains. Therefore, finding new alternatives for infection control is essential, one of which is using bacteriophages. MATERIALS AND METHODS: Lytic bacteriophage against Shigella dysenteriae was isolated from petroleum refinery wastewater. Phage morphological and genetic characteristics were studied using TEM, and sequencing, respectively. In addition, the genome size was estimated, and phage resistance to different temperatures and pH, host range, adsorption rate, and one-step growth were investigated. RESULTS: According to the morphology and genetic results, this phage was named vB-SdyS-ISF003. Sequencing of the PCR products revealed that the vB-SdyS-ISF003 phage belongs to the species T1virus, subfamily Tunavirinae of family Siphoviridae. This was the first detected bacteriophage against S. dysenteriae, which belongs to the family Siphoviridae. In addition, its host range was limited to S. dysenteriae. The genome size was about 62 kb. vB-SdyS-ISF003 phage has a number of desirable characteristics including the limited host range to S. dysenteriae, very short connection time, a relatively wide range of temperature tolerance -20 to 50 °C, pH tolerance of 7-9 without significant reduction in the phage titer. CONCLUSION: vB-SdyS-ISF003 is a novel virulent T1virus phage and has the appropriate potential for being used in bio controlling of S. dysenteriae in different condition.


Assuntos
Reação em Cadeia da Polimerase/métodos , Shigella dysenteriae/virologia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , DNA Viral/genética , Tamanho do Genoma , Genoma Viral , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Terapia por Fagos , Shigella dysenteriae/patogenicidade , Siphoviridae/crescimento & desenvolvimento , Temperatura , Termotolerância
5.
Appl Microbiol Biotechnol ; 102(23): 10219-10230, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30302521

RESUMO

Phages, the most abundant species in the mammalian gut, have numerous advantages as biocontrol agent over antibiotics. In this study, mice were orally treated with the lytic gut phage PA13076 (group B), the temperate phage BP96115 (group C), no phage (group A), or streptomycin (group D) over 31 days. At the end of the experiment, fecal microbiota diversity and composition was determined and compared using high-throughput sequencing of the V3-V4 hyper-variable region of the 16S rRNA gene and virus-like particles (VLPs) were quantified in feces. There was high diversity and richness of microbiota in the lytic and temperate gut phage-treated mice, with the lytic gut phage causing an increased alpha diversity based on the Chao1 index (p < 0.01). However, the streptomycin treatment reduced the microbiota diversity and richness (p = 0.0299). Both phage and streptomycin treatments reduced the abundance of Bacteroidetes at the phylum level (p < 0.01) and increased the abundance of the phylum Firmicutes. Interestingly, two beneficial genera, Lactobacillus and Bifidobacterium, were enhanced by treatment with the lytic and temperate gut phage. The abundance of the genus Escherichia/Shigella was higher in mice after temperate phage administration than in the control group (p < 0.01), but lower than in the streptomycin group. Moreover, streptomycin treatment increased the abundance of the genera Klebsiella and Escherichia/Shigella (p < 0.01). In terms of the gut virome, fecal VLPs did not change significantly after phage treatment. This study showed that lytic and temperate gut phage treatment modulated the composition and diversity of gut microbiota and the lytic gut phage promoted a beneficial gut ecosystem, while the temperate phage may promote conditions enabling diseases to occur.


Assuntos
Bacteriófagos/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Bacteriólise , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/virologia , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/virologia , Escherichia/efeitos dos fármacos , Escherichia/virologia , Fezes/microbiologia , Feminino , Firmicutes/efeitos dos fármacos , Firmicutes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Klebsiella/efeitos dos fármacos , Klebsiella/virologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/virologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Shigella/efeitos dos fármacos , Shigella/virologia , Estreptomicina/farmacologia
6.
Antimicrob Agents Chemother ; 60(3): 1943-7, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26824960

RESUMO

Highly drug-resistant Salmonella enterica serovar Indiana became the most common serovar in broilers with diarrhea in China over the course of this study (15% in 2010 to 70% in 2014). While most S. Indiana isolates (87%, 384/440) were resistant to 13 to 16 of the 16 antibiotics tested, 89% of non-S. Indiana isolates (528/595) were resistant to 0 to 6 antibiotics. Class 1 integrons and IncHI2-type plasmids were detected in all S. Indiana isolates, but only in 39% and 1% of non-S. Indiana isolates.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/efeitos dos fármacos , Animais , China , Enterite/microbiologia , Humanos , Integrons/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Sorotipagem
7.
Microb Pathog ; 97: 103-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27265679

RESUMO

Staphylococcus aureus is a significant bacterial pathogen associated with bovine mastitis. The aim of the present study was to investigate and characterize of S. aureus strains isolated from the milk of cows suffering from mastitis in the mid-east of China. Among the 200 milk samples analyzed, 58 were positive for S. aureus, of these isolates, 11 isolates were methicillin-resistant Staphylococcus aureus (MRSA). All of the 58 S. aureus strains were classified in agr group I, while seven different sequence type (ST) patterns were identified and among them the most common was ST630 followed by ST188. All of the S. aureus isolates belonging to ST630 were resistant to more than four antimicrobials, and 22.2% of isolates belonging to ST188 were resistant to eight antimicrobials. Interestingly, while strong biofilm producers demonstrated higher resistance to multiple antimicrobials, they exhibited lower intracellular survival rates. The results of this study illustrated the distribution, antimicrobial susceptibility profiles, genotype, and the ability of biofilm production and mammary epithelial cells invasion of these S. aureus isolates. This study can provide the basis for the development of a disease prevention program in dairy farms to reduce the potential risk in both animal and human health.


Assuntos
Mastite Bovina/microbiologia , Leite/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/classificação , Staphylococcus aureus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Bovinos , China/epidemiologia , Genótipo , Mastite Bovina/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
9.
Intervirology ; 58(4): 218-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26337345

RESUMO

OBJECTIVES: To characterize the lytic coliphage vB_EcoM_JS09 (phage JS09) isolated from sewage samples of a swine farm in Jiangsu Province, China, which infects antibiotic-resistant avian pathogenic Escherichia coli (APEC) and enterotoxigenic E. coli (ETEC). METHODS AND RESULTS: Transmission electron microscopy revealed that phage JS09 has an isometric icosahedral head (76 nm in diameter) and a long contractile tail (140 nm in length) and features a T-even morphology. Its latent period was 30 min and the average burst size was 79 phage particles per infected cell. It attached to the host cells within 9 min. JS09 could infect 16 clinically isolated APEC and ETEC strains and the laboratory-engineered E. coli K and B strains. Ten of the clinical isolates of E. coli were resistant to antibiotics. At a multiplicity of infection of 10, 3, 1, or 0.3, the phage caused rapid cell lysis within 2 h, resulting in 5- to 10-fold reductions in cell concentration. Sequencing of the JS09 genome revealed a 169.148-kb linear but circularly permuted and terminally redundant dsDNA with 37.98% G+C content. Two hundred seventy-three open reading frames were predicted to be coding sequences, 135 of which were functionally defined and organized in a modular format which includes modules for DNA replication, DNA packaging, structural proteins, and host cell lysis proteins. Phage JS09 is assigned to the Caudovirales order (Myoviridae phage family), and it is considered a T4-like phage based on its morphological, genomic, and growth characteristics. JS09 gp37, a receptor-binding protein (RBP) important for host cell infection, shares little homology with other RBP in the NCBI database, which suggests that the variable regions in gp37 determine the unique host range of phage JS09. Protein sequence comparisons cluster the putative 'RBP' of JS09 much more closely with those of Yersinia phage phiD1, phage TuIa, and phage TuIb. CONCLUSIONS: A novel lytic coliphage named JS09 was isolated from sewage samples of a swine farm in Jiangsu Province, China. It could infect antibiotic-resistant APEC and ETEC. The morphological, genomic, and growth characteristics of JS09 were studied, and this will be helpful for phage therapy in controlling diseases caused by APEC and ETEC.


Assuntos
Colífagos/isolamento & purificação , Escherichia coli Enterotoxigênica/virologia , Escherichia coli/virologia , Myoviridae/isolamento & purificação , Esgotos/virologia , Animais , Composição de Bases , Aves/microbiologia , China , Colífagos/genética , Colífagos/fisiologia , Colífagos/ultraestrutura , DNA Viral/genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli/patogenicidade , Genoma Viral , Especificidade de Hospedeiro , Gado , Microscopia Eletrônica de Transmissão , Myoviridae/genética , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Análise de Sequência de DNA , Sus scrofa
10.
Virus Genes ; 50(1): 111-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25328045

RESUMO

Using bacteriophages as a tool to the control of pathogens is a complementary to antibiotic therapy. We have isolated a lytic bacteriophage, designated vB_SauM_JS25, from sewage effluent on a dairy farm in Jiangsu, Mid-east of China for use as a biocontrol agent against Staphylococcus aureus infections. Phage vB_SauM_JS25 was morphologically classified as Myoviridae. The phage showed broad host ranges within S. aureus strains, lysing 51 of 56 strains (91.1 %). Its latent period and burst size were approximately 20 min and 21 PFU/cell, respectively. Phage vB_SauM_JS25 was able to survive in a pH range between 6 and 9. However, a treatment of 70 or 80 °C for 10 min completely inactivated the phage. Moreover, morphologic analysis of vB_SauM_JS25 revealed that it was closely related to other Myoviridae phages infecting Staphylococcus species. The bacteriolytic activity of phage vB_SauM_JS25 at a multiplicity infection (MOI) 1 indicted its efficiency for reducing bacterial growth. These findings suggest that phage vB_SauM_JS25 could be considered a potential therapeutic or prophylactic candidate against S. aureus infection.


Assuntos
Myoviridae/classificação , Myoviridae/isolamento & purificação , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/isolamento & purificação , Staphylococcus aureus/virologia , Animais , Bacteriólise , Bovinos , China , Contagem de Colônia Microbiana , Feminino , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Mastite Bovina/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microscopia Eletrônica de Transmissão , Myoviridae/genética , Myoviridae/ultraestrutura , Análise de Sequência de DNA , Esgotos/virologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/ultraestrutura , Staphylococcus aureus/isolamento & purificação , Temperatura
11.
Poult Sci ; 92(1): 211-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23243250

RESUMO

Shigellosis, also called bacillary dysentery, is an infectious disease caused by Shigella species, including Shigella flexneri, Shigella dysenteriae, Shigella sonnei, and Shigella boydii. Infection with S. flexneri can result in epidemics, and Shigella-contaminated food is often the source of infection, such as ready-to-eat spiced chicken and duck. Therefore, we investigated the ability of Shigella phages to inhibit pathogenic Shigella spp. in ready-to-eat spiced chicken. Food samples were inoculated with individual species (1 × 10(4) cfu/g) or a mixture (S. flexneri 2a, S. dysenteriae, and S. sonnei) to a total concentration of 3 × 10(4) cfu/g. Single phages or a phage cocktail were added thereafter (1 × 10(8) pfu/g or 3 × 10(8) pfu/g), respectively, and samples were incubated at 4°C for 72 h. In general, the application of more phages (3 × 10(8) pfu/g) was the most effective treatment. Phages could reduce bacterial counts by up to 2 log(10)/g after 48 h incubation when treated with the cocktail, and after 72 h the host could not be detected. Similarly, the host in spiced chicken treated with single phage was also sharply reduced after 72 h incubation. The results suggest that an obligately virulent phage cocktail, such as S. flexneri, S. dysenteriae, and S. sonnei phages, can effectively reduce potential contamination of Shigella spp. in ready-to-eat chicken products.


Assuntos
Bacteriófagos/fisiologia , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Shigella/virologia , Animais , Galinhas , Temperatura Alta , Concentração de Íons de Hidrogênio
12.
Antioxidants (Basel) ; 12(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36829812

RESUMO

The objective of this study was to evaluate the effects of encapsulated essential oils (EOs) on the gut microbiota, growth performance, intestinal morphology, antioxidant properties and barrier function of meat-type ducks. A total of 320 male Cherry Valley ducks (1 day old), were randomly assigned to four dietary experimental groups with eight replicates of ten ducks each. The groups consisted of the CON group (basal diet), the HEO group (basal diet + EO 1000 mg/kg), the LEO group (basal diet + EO 500 mg/kg), and the ANT group (basal diet + chlortetracycline 50 mg/kg). Our findings indicated that ducks fed with EO 1000 mg/kg had greater average daily feed intake (ADFI), average daily gain (ADG), and body weight (BW) and a lower feed conversion ratio (FCR) than the other groups. The serum concentration of TG reduced in the HEO (p > 0.05) and LEO (p < 0.05) groups on day 42, while the concentration of CHOL increased with the EO concentration in the LEO (p > 0.05) and HEO (p < 0.05) groups. No differences were observed in the ileal mucosa for the activities of SOD, MPO and GSH-PX after EO dietary treatment. Dietary supplementation with EOs significantly increased the villus heights (p < 0.01) and the ratio of villus height to crypt depth (c/v) in the duodenum and jejunum of ducks. Moreover, the mRNA expressions of Claudin1 and Occludin in the jejunal mucosa were observed to be higher in the LEO and HEO groups rather than the CON and ANT groups on d 42. The α diversity showed that the HEO group improved the bacterial diversity and abundance. The ß diversity analysis indicated that the microbial structures of the four groups were obviously separated. EO dietary supplementation could increase the relative abundance (p < 0.01) of the Bacteroidetes phylum, Bacteroidaceae family, and Bacteroides, Desulfovibrio, Phascolarctobacterium, and Butyricimonas genera in the cecal microbiota of ducks. We demonstrated significant differences in the bacterial composition and functional potential of the gut microbiota in ducks that were fed either an EO diet or a basal diet. Therefore, supplemented EOs was found to have a positive effect on the growth performance and intestinal health of ducks, which was attributed to the improvement in cecal microbiota, intestinal morphology, and barrier function.

13.
Foods ; 12(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36673503

RESUMO

Clostridium perfringens is a gram-positive, anaerobic, spore-forming bacterium capable of producing four major toxins which cause disease symptoms and pathogenesis in humans and animals. C. perfringens strains carrying enterotoxins can cause food poisoning in humans and are associated with meat consumption. An endolysin, named LysCP28, is encoded by orf28 from C. perfringens bacteriophage BG3P. This protein has an N-terminal glycosyl-hydrolase domain (lysozyme) and a C-terminal SH3 domain. Purified LysCP28 (38.8 kDa) exhibited a broad spectrum of lytic activity against C. perfringens strains (77 of 96 or 80.21%), including A, B, C, and D types, isolated from different sources. Moreover, LysCP28 (10 µg/mL) showed high antimicrobial activity and was able to lyse 2 × 107 CFU/mL C. perfringens ATCC 13124 and C. perfringens J21 (animal origin) within 2 h. Necessary due to this pathogenic bacterium's ability to form biofilms, LysCP28 (18.7 µg/mL) was successfully evaluated as an antibiofilm agent in both biofilm removal and formation inhibition. Finally, to confirm the efficacy of LysCP28 in a food matrix, duck meat was contaminated with C. perfringens and treated with endolysin (100 µg/mL and 50 µg/mL), which reduced viable bacteria by 3.2 and 3.08 units-log, respectively, in 48 h at 4 °C. Overall, the endolysin LysCP28 could potentially be used as a biopreservative to reduce C. perfringens contamination during food processing.

14.
Food Microbiol ; 31(1): 133-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22475951

RESUMO

The endolysin gene (lysZ5) from the genome of the Listeria monocytogenes phage FWLLm3 was cloned in Escherichia coli and characterized. Comparative sequence analysis revealed that lysZ5 resembled the murein hydrolase ply511 encoded by L. monocytogenes phage A511. The encoded protein LysZ5 had a predicted molecular mass of 35.8 kDa and was expressed in E. coli as an N-terminal fusion protein of 41.5 kDa. Addition of purified fusion protein to lawns of indicator bacteria showed that LysZ5 could lyse L. monocytogenes, Listeria innocua and Listeria welshimeri, but not Staphylococcus aureus or Enterococcus faecalis. The purified protein was able to kill L. monocytogenes growing in soya milk, with the pathogen concentration reduced by more than 4 log10 CFU ml⁻¹ after 3 h incubation at 4 °C. As far as we know, this is the first report of a Listeria phage endolysin to control pathogens in soya milk and to demonstrate endolysin activity in foods at refrigeration temperatures. Moreover, LysZ5 may also be useful for biocontrol in other ready-to-eat foods.


Assuntos
Bacteriófagos/enzimologia , Endopeptidases/metabolismo , Contaminação de Alimentos/análise , Listeria monocytogenes/virologia , Leite de Soja , Anti-Infecciosos/metabolismo , Bacteriófagos/genética , Agentes de Controle Biológico , Clonagem Molecular , DNA Viral/genética , Enterococcus faecalis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Genes Virais , Listeria monocytogenes/isolamento & purificação , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Refrigeração , Análise de Sequência de DNA , Staphylococcus aureus/metabolismo
15.
mSystems ; 7(4): e0028222, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35699454

RESUMO

Lung inflammation induced by Mycoplasma hyorhinis infection accounts for significant economic losses in the swine industry. Increasing evidence suggests that there is cross talk between the lungs and the gut, but little is known about the effect of the lung inflammation caused by M. hyorhinis infection on gut microbiota and intestinal barrier function. Here, we investigated changes in the fecal microbiotas of pigs with M. hyorhinis infection and the microbial regulatory role of such infection in intestinal barrier function. We infected pigs with M. hyorhinis and performed 16S rRNA gene sequencing analyses of fecal samples, data-independent acquisition (DIA) quantitative proteomic analyses of intestinal mucosa, and analyses of barrier dysfunction indicators in serum. We found that pigs with M. hyorhinis infection exhibit lung and systemic inflammation, as reflected by the histopathological changes and activation of the TLR4/MyD88/NF-κB p65 signaling pathway in lung tissue, as well as the increased concentrations of serum inflammatory cytokines. Gut microbiotas tended to become disturbed, as evidenced by the enrichment of opportunistic pathogens. The increased diamine oxidase activities and d-lactate concentrations in serum and the decreased relative mRNA expression of Occludin, ZO-1, and Mucin2 indicated the impairment of intestinal barrier function. Quantitative proteomic analyses showed a variety of altered proteins involved in immunomodulatory and inflammatory functions. There was a positive correlation between the abundance of opportunistic pathogens and inflammatory-cytokine concentrations, as well as intestinal immunomodulatory proteins. Our results suggest that lung inflammation induced by M. hyorhinis infection can contribute to the dysbiosis of gut microbiota and intestinal barrier dysfunction, and dysbiosis of gut microbiota was associated with systemic inflammation and intestinal immune status. IMPORTANCE Cumulative evidence suggests that bacterial pneumonia may contribute to the dysbiosis of the gut microbiota and other gastrointestinal symptoms. Our experiment has demonstrated that lung inflammation induced by M. hyorhinis infection was associated with gut microbiota dysbiosis and intestinal barrier dysfunction, which may provide a theoretical basis for exploring the gut-lung axis based on M. hyorhinis infection.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Enteropatias , Infecções por Mycoplasma , Mycoplasma hyorhinis , Pneumonia , Animais , Suínos , Disbiose/veterinária , RNA Ribossômico 16S , Proteômica , Inflamação , Citocinas/farmacologia
16.
Front Microbiol ; 13: 929005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992713

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and Enterotoxigenic E. coli (ETEC) are important foodborne pathogens, causing serious food poisoning outbreaks worldwide. Bacteriophages, as novel antibacterial agents, have been increasingly exploited to control foodborne pathogens. In this study, a novel broad-host range lytic phage vB_EcoM_SQ17 (SQ17), was isolated, characterized, and evaluated for its potential to control bacterial counts in vitro and in three different food matrices (milk, raw beef, and fresh lettuce). Phage SQ17 was capable of infecting EHEC O157:H7, ETEC, and other E. coli strains. Morphology, one-step growth, and stability assay showed that phage SQ17 belongs to the Caudovirales order, Myoviridae family, and Mosigvirus genus. It has a short latent period of 10 min, a burst size of 71 PFU/infected cell, high stability between pH 4 to 12 as well as thermostability between 30°C and 60°C for 60 min. Genome sequencing analysis revealed that the genome of SQ17 does not contain any genes associated with antibiotic resistance, toxins, lysogeny, or virulence factors, indicating the potential safe application of phage SQ17 in the food industry. In Luria-Bertani (LB) medium, phage SQ17 significantly decreased the viable counts of EHEC O157:H7 by more than 2.40 log CFU/ml (p < 0.05) after 6 h of incubation at 37°C. Phage SQ17 showed great potential to be applied for biocontrol of EHEC O157:H7 in milk and raw beef. In fresh lettuce, treatment with SQ17 also resulted in significant reduction of viable cell counts of EHEC O157:H7 and ETEC at both 4°C and 25°C. Our results demonstrate that SQ17 is a good candidate for application as an EHEC O157:H7 and ETEC biocontrol agent in the processing stages of food production and food preservation.

17.
Microbiol Resour Announc ; 11(6): e0108621, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35532229

RESUMO

Here, we report the genome of phage SAP012, which was isolated against Salmonella enterica serovar Typhimurium. The SAP012 genome is 59,618 bp, with a G+C content of 56.2% and with no antibiotic resistance or virulence genes, and is quite similar at the nucleotide level to a number of previously sequenced Salmonella phage genomes, e.g., GenBank accession numbers KM366098.1 and KC139515.1.

18.
Int J Food Microbiol ; 363: 109514, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34999475

RESUMO

Clostridium perfringens is a well-known pathogen that causes foodborne disease. With a high prevalence of contamination in food, an efficient strategy is needed to decontaminate those contaminated foods and control the emergence of foodborne disease. In this study, the C. perfringens-specific lytic phage vB_CpeP_HN02 (designated as phage HN02) was isolated from chicken feces. Electron microscopy and phylogenetic analysis suggested that phage vB_CpeP_HN02 is a novel phage of the family Podoviridae. Phage HN02 had good pH (5-11) and temperature tolerance (< 70 °C). Phage HN02 exhibited a broad host range of C. perfringens isolates (42.86%). The complete genome of the phage HN02 was sequenced and revealed a linear double-stranded DNA genome. The 17,754-bp genome (GenBank MW815121) with average GC content of 28.2% includes 22 predicted open reading frames, of which only 10 were annotated with known functions. Phylogenetic analysis of the available C. perfringens phage major capsid protein demonstrated that phage HN02 is closely related to virulent C. perfringens phage phi24R and CPD2. When phage HN02 was applied to chicken meat samples stored at 4 °C for 72 h with 1 × 106 to 1 × 109 PFU/g, 95% to 99% of C. perfringens were inactivated on chicken meat surfaces after storage at 4 °C for 72 h, respectively. It should be noted that C. perfringens could be completely lysed by a high dose of phage HN02 (1 × 1010 PFU/g) after 48 h treatment in chicken samples. Through the lytic activity testing, phage HN02 showed good antimicrobial effects, and can be used as an antibacterial agent for biocontrol of C. perfringens in meat products.


Assuntos
Bacteriófagos , Animais , Bacteriófagos/genética , Galinhas , Clostridium perfringens , Carne , Filogenia
19.
Microbiol Res ; 260: 127020, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35462115

RESUMO

Many studies have shown the efficacy of phage therapy in reducing intestinal pathogens. However, phage-based probiotic treatment is poorly studied in view of effects on the gut microbiota and intestinal inflammation. In this study, a lytic or a temperate phage (each at 4 ×108 PFU per day) or a streptomycin solution (40 mg per day) were administered to mice via drinking water for 31 days. Subsequently, mice were challenged with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium). S. Typhimurium does not serve as the host bacterium and is not lysed by both phages. For intestinal inflammation evaluation, mice were given one dose of streptomycin for 24 h before the S. Typhimurium challenge. High-throughput sequencing analysis revealed that the phylum Firmicutes became the most abundant in mice pretreated with phages. The alpha diversity of gut bacteria was higher in phage treated than in streptomycin treated mice. Moreover, pretreatment with the lytic and the temperate phage before the S. Typhimurium challenge increased two beneficial genera, Lactobacillus and Bifidobacterium. According to the pathological analysis of ileum, cecum, and serum, temperate or lytic gut phage pretreatment of mice markedly reduced intestinal inflammation, concomitant with lower serum concentration of lipopolysaccharides (LPS) and diamine oxidase (DAO). The oral pretreatments of mice (ST, Lyt, Lys, SM) generally caused an increased expression of IL-1ß, TNF-α, IFN-γ, IL-4, and IL-10 compared to the matching control. However, in mice pretreated with the lytic phage, the mRNA expression for the pro-inflammatory cytokine TNF-α was not significantly higher than that of the control group. No significant differences were detected for peripheral blood B lymphocytes, CD3 +T cells, and the CD4 + /CD8 + ratio in mice pretreated with the lytic and lysogenic phage. This study demonstrated that even lytic phages not targeting the pathogenic serovar Salmonella Typhimurium alleviated intestinal dysbiosis and inflammation in challenged mice.


Assuntos
Bacteriófagos , Salmonelose Animal , Animais , Disbiose/terapia , Inflamação/terapia , Camundongos , Salmonelose Animal/microbiologia , Salmonella typhimurium , Estreptomicina
20.
Viruses ; 14(4)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35458406

RESUMO

Clostridium perfringens is an important pathogen for both humans and animals, causing human foodborne disease and necrotic enteritis in poultry. In the present study, a C. perfringens-specific phage, vB_CpeS_BG3P (designated as BG3P hereafter), was isolated from chicken farm sewage. Both electron microscopy and phylogenetic analysis suggested that phage BG3P is a novel phage belonging to Siphoviridae family. Phage BG3P exhibited a broad host range against different C. perfringens isolates (90.63% of strains were infected). Sequencing of the complete genome revealed a linear double-stranded DNA (43,528 bp) with 28.65% GC content. After sequence analysis, 73 open reading frames (orfs) were predicted, of which only 13 were annotated with known functions. No tRNA and virulence encoding genes were detected. It should be noted that the protein of orf 15 has 97.92% homology to C. perfringens-specific chloramphenicol resistance protein, which has not been reported for any C. perfringens phage. Phylogenetic analysis of the ssDNA binding protein demonstrated that this phage is closely related to C. perfringens phages phiSM101 and phi3626. In considering future use as an antimicrobial agent, some biological characteristics were observed, such as a good pH (3−11) stability and moderate temperature tolerance (<60 °C). Moreover, bacteriophage BG3P showed a good antimicrobial effect against C. perfringens liquid cultures. Thus, phage treatment with MOI ≥ 100 completely inhibited bacterial growth compared to untreated cultures. Although phage BG3P shows good lytic efficiency and broad host range in vitro, future development and application may need to consider removal of the chloramphenicol-like resistance gene or exploring its lysin for future antibacterial applications.


Assuntos
Bacteriófagos , Siphoviridae , Animais , Clostridium perfringens/genética , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Siphoviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA