Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 72(2): 341-354.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270106

RESUMO

Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.


Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Fatores de Transcrição Kruppel-Like/genética , Oncogenes/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética
2.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929643

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Neoplasias da Mama/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo
3.
Nature ; 560(7719): 499-503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051890

RESUMO

Mutations in PIK3CA, which encodes the p110α subunit of the insulin-activated phosphatidylinositol-3 kinase (PI3K), and loss of function mutations in PTEN, which encodes a phosphatase that degrades the phosphoinositide lipids generated by PI3K, are among the most frequent events in human cancers1,2. However, pharmacological inhibition of PI3K has resulted in variable clinical responses, raising the possibility of an inherent mechanism of resistance to treatment. As p110α mediates virtually all cellular responses to insulin, targeted inhibition of this enzyme disrupts glucose metabolism in multiple tissues. For example, blocking insulin signalling promotes glycogen breakdown in the liver and prevents glucose uptake in the skeletal muscle and adipose tissue, resulting in transient hyperglycaemia within a few hours of PI3K inhibition. The effect is usually transient because compensatory insulin release from the pancreas (insulin feedback) restores normal glucose homeostasis3. However, the hyperglycaemia may be exacerbated or prolonged in patients with any degree of insulin resistance and, in these cases, necessitates discontinuation of therapy3-6. We hypothesized that insulin feedback induced by PI3K inhibitors may reactivate the PI3K-mTOR signalling axis in tumours, thereby compromising treatment effectiveness7,8. Here we show, in several model tumours in mice, that systemic glucose-insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence of PI3K inhibitors. This insulin feedback can be prevented using dietary or pharmaceutical approaches, which greatly enhance the efficacy/toxicity ratios of PI3K inhibitors. These findings have direct clinical implications for the multiple p110α inhibitors that are in clinical trials and provide a way to increase treatment efficacy for patients with many types of tumour.


Assuntos
Retroalimentação Fisiológica/efeitos dos fármacos , Insulina/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Animais , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
Exp Dermatol ; 32(7): 1051-1062, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37039485

RESUMO

Cyclic AMP (cAMP) has a key role in psoriasis pathogenesis, as indicated by the therapeutic efficacy of phosphodiesterase inhibitors that prevent the degradation of cAMP. However, whether soluble adenylate cyclase (sAC) (encoded by the ADCY10 gene), which is an important source for cAMP, is involved in Th17 cell-mediated inflammation or could be an alternative therapeutic target in psoriasis is unknown. We have utilized the imiquimod model of murine psoriasiform dermatitis to address this question. Adcy10-/- mice had reduced erythema, scaling and swelling in the skin and reduced CD4+ IL17+ cell numbers in the draining lymph nodes, compared with wild-type mice after induction of psoriasiform dermatitis with imiquimod. Keratinocyte-specific knock out of Adcy10 had no effect on imiquimod-induced ear swelling suggesting keratinocyte sAC has no role in imiquimod-induced inflammation. During Th17 polarization in vitro, naive T cells from Adcy10-/- mice exhibited reduced IL17 secretion and IL-17+ T-cell proliferation suggesting that differentiation into Th17 cells is suppressed without sAC activity. Interestingly, loss of sAC did not impact the expression of Th17 lineage-defining transcription factors (such as Rorc and cMaf) but rather was required for CREB-dependent gene expression, which is known to support Th17 cell gene expression. Finally, topical application of small molecule sAC inhibitors (sACi) reduced imiquimod-induced psoriasiform dermatitis and Il17 gene expression in the skin. Collectively, these findings demonstrate that sAC is important for psoriasiform dermatitis in mouse skin. sACi may provide an alternative class of topical therapeutics for Th17-mediated skin diseases.


Assuntos
Adenilil Ciclases , Eczema , Psoríase , Animais , Camundongos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Modelos Animais de Doenças , Eczema/patologia , Imiquimode/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/patologia , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele/metabolismo , Células Th17/metabolismo
6.
Am J Respir Cell Mol Biol ; 66(3): 302-311, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851798

RESUMO

The 17q21 asthma susceptibility locus includes asthma risk alleles associated with decreased sphingolipid synthesis, likely resulting from increased expression of ORMDL3. ORMDL3 inhibits serine-palmitoyl transferase (SPT), the rate-limiting enzyme of de novo sphingolipid synthesis. There is evidence that decreased sphingolipid synthesis is critical to asthma pathogenesis. Children with asthma and 17q21 asthma risk alleles display decreased sphingolipid synthesis in blood cells. Reduced SPT activity results in airway hyperreactivity, a hallmark feature of asthma. 17q21 asthma risk alleles are also linked to childhood infections with human rhinovirus (RV). This study evaluates the interaction of RV with the de novo sphingolipid synthesis pathway, and the alterative effects of concurrent SPT inhibition in SPT-deficient mice and human airway epithelial cells. In mice, RV infection shifted lung sphingolipid synthesis gene expression to a pattern that resembles genetic SPT deficiency, including decreased expression of Sptssa, a small SPT subunit. This pattern was pronounced in lung epithelial cellular adhesion molecule (EpCAM+) cells and reproduced in human bronchial epithelial cells. RV did not affect Sptssa expression in lung CD45+ immune cells. RV increased sphingolipids unique to the de novo synthesis pathway in mouse lung and human airway epithelial cells. Interestingly, these de novo sphingolipid species were reduced in the blood of RV-infected wild-type mice. RV exacerbated SPT deficiency-associated airway hyperreactivity. Airway inflammation was similar in RV-infected wild-type and SPT-deficient mice. This study reveals the effects of RV infection on the de novo sphingolipid synthesis pathway, elucidating a potential mechanistic link between 17q21 asthma risk alleles and rhinoviral infection.


Assuntos
Proteínas de Membrana , Rhinovirus , Animais , Criança , Humanos , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo
7.
Appl Opt ; 61(15): 4458-4462, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256284

RESUMO

Optical coherence tomography (OCT) is being investigated in breast cancer diagnostics as a real-time histology evaluation tool. We present a customized deep convolutional neural network (CNN) for classification of breast tissues in OCT B-scans. Images of human breast samples from mastectomies and breast reductions were acquired using a custom ultrahigh-resolution OCT system with 2.72 µm axial resolution and 5.52 µm lateral resolution. The network achieved 96.7% accuracy, 92% sensitivity, and 99.7% specificity on a dataset of 23 patients. The usage of deep learning will be important for the practical integration of OCT into clinical practice.


Assuntos
Neoplasias da Mama , Tomografia de Coerência Óptica , Humanos , Feminino , Tomografia de Coerência Óptica/métodos , Neoplasias da Mama/patologia , Redes Neurais de Computação , Mastectomia
8.
Oncologist ; 26(11): e1971-e1981, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34286887

RESUMO

BACKGROUND: Characterization of circulating tumor DNA (ctDNA) has been integrated into clinical practice. Although labs have standardized validation procedures to develop single locus tests, the efficacy of on-site plasma-based next-generation sequencing (NGS) assays still needs to be proved. MATERIALS AND METHODS: In this retrospective study, we profiled DNA from matched tissue and plasma samples from 75 patients with cancer. We applied an NGS test that detects clinically relevant alterations in 33 genes and microsatellite instability (MSI) to analyze plasma cell-free DNA (cfDNA). RESULTS: The concordance between alterations detected in both tissue and plasma samples was higher in patients with metastatic disease. The NGS test detected 77% of sequence alterations, amplifications, and fusions that were found in metastatic samples compared with 45% of those alterations found in the primary tumor samples (p = .00005). There was 87% agreement on MSI status between the NGS test and tumor tissue results. In three patients, MSI-high ctDNA correlated with response to immunotherapy. In addition, the NGS test revealed an FGFR2 amplification that was not detected in tumor tissue from a patient with metastatic gastric cancer, emphasizing the importance of profiling plasma samples in patients with advanced cancer. CONCLUSION: Our validation experience of a plasma-based NGS assay advances current knowledge about translating cfDNA testing into clinical practice and supports the application of plasma assays in the management of oncology patients with metastatic disease. With an in-house method that minimizes the need for invasive procedures, on-site cfDNA testing supplements tissue biopsy to guide precision therapy and is entitled to become a routine practice. IMPLICATIONS FOR PRACTICE: This study proposes a solution for decentralized liquid biopsy testing based on validation of a next-generation sequencing (NGS) test that detects four classes of genomic alterations in blood: sequence mutations (single nucleotide substitutions or insertions and deletions), fusions, amplifications, and microsatellite instability (MSI). Although there are reference labs that perform single-site comprehensive liquid biopsy testing, the targeted assay this study validated can be established locally in any lab with capacity to offer clinical molecular pathology assays. To the authors' knowledge, this is the first report that validates evaluating an on-site plasma-based NGS test that detects the MSI status along with common sequence alterations encountered in solid tumors.


Assuntos
DNA Tumoral Circulante , Neoplasias , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites , Neoplasias/genética , Estudos Retrospectivos
9.
Am J Pathol ; 189(10): 2019-2035, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323189

RESUMO

Obesity is associated with adipose inflammation, defined by macrophages encircling dead adipocytes, as well as extracellular matrix (ECM) remodeling and increased risk of breast cancer. Whether ECM affects macrophage phenotype in obesity is uncertain. A better understanding of this relationship could be strategically important to reduce cancer risk or improve outcomes in the obese. Using clinical samples, computational approaches, and in vitro decellularized ECM models, this study quantified the relative abundance of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in human breast adipose tissue, determined molecular similarities between obesity and tumor-associated macrophages, and assessed the regulatory effect of obese versus lean ECM on macrophage phenotype. Our results suggest that breast adipose tissue contains more M2- than M1-biased macrophages across all body mass index categories. Obesity further increased M2-biased macrophages but did not affect M1-biased macrophage density. Gene Set Enrichment Analysis suggested that breast tissue macrophages from obese versus lean women are more similar to tumor-associated macrophages. These changes positively correlated with adipose tissue interstitial fibrosis, and in vitro experiments indicated that obese ECM directly stimulates M2-biased macrophage functions. However, mammographic density cannot be used as a clinical indicator of these changes. Collectively, these data suggest that obesity-associated interstitial fibrosis promotes a macrophage phenotype similar to tumor-associated macrophages, which may contribute to the link between obesity and breast cancer.


Assuntos
Tecido Adiposo/patologia , Neoplasias da Mama/patologia , Matriz Extracelular/patologia , Macrófagos/patologia , Obesidade/complicações , Animais , Neoplasias da Mama/cirurgia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Estudos Prospectivos
10.
J Natl Compr Canc Netw ; 17(3): 194-200, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865916

RESUMO

Urothelial carcinoma (UC) is a common and frequently lethal cancer. Despite the presence of genomic alterations creating dependency on particular signaling pathways, the use of targeted therapies in advanced and metastatic UC has been limited. We performed an integrated analysis of whole-exome and RNA sequencing of primary and metastatic tumors in a patient with platinum-resistant UC. We found a strikingly high ERBB2 mRNA expression and enrichment of downstream oncogenic ERBB2 signaling in this patient's tumors compared with tumors from an unselected group of patients with UC (N=17). This patient had an exceptional sustained response to trastuzumab. Our findings show that oncogenic addiction to ERBB2 signaling potentially predicts response to ERBB2-directed therapy of UC.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Vício Oncogênico , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Neoplasias Uretrais/diagnóstico , Neoplasias Uretrais/metabolismo , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Imuno-Histoquímica , Estadiamento de Neoplasias , Vício Oncogênico/genética , RNA Mensageiro/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Análise de Sequência de DNA , Tomografia Computadorizada por Raios X , Neoplasias Uretrais/tratamento farmacológico , Neoplasias Uretrais/etiologia , Sequenciamento do Exoma
11.
Cancer ; 124(5): 1008-1015, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29266381

RESUMO

BACKGROUND: Metastatic biopsies are increasingly being performed in patients with advanced prostate cancer to search for actionable targets and/or to identify emerging resistance mechanisms. Due to a predominance of bone metastases and their sclerotic nature, obtaining sufficient tissue for clinical and genomic studies is challenging. METHODS: Patients with prostate cancer bone metastases were enrolled between February 2013 and March 2017 on an institutional review board-approved protocol for prospective image-guided bone biopsy. Bone biopsies and blood clots were collected fresh. Compact bone was subjected to formalin with a decalcifying agent for diagnosis; bone marrow and blood clots were frozen in optimum cutting temperature formulation for next-generation sequencing. Frozen slides were cut from optimum cutting temperature cryomolds and evaluated for tumor histology and purity. Tissue was macrodissected for DNA and RNA extraction, and whole-exome sequencing and RNA sequencing were performed. RESULTS: Seventy bone biopsies from 64 patients were performed. Diagnostic material confirming prostate cancer was successful in 60 of 70 cases (85.7%). The median DNA/RNA yield was 25.5 ng/µL and 16.2 ng/µL, respectively. Whole-exome sequencing was performed successfully in 49 of 60 cases (81.7%), with additional RNA sequencing performed in 20 of 60 cases (33.3%). Recurrent alterations were as expected, including those involving the AR, PTEN, TP53, BRCA2, and SPOP genes. CONCLUSIONS: This prostate cancer bone biopsy protocol ensures a valuable source for high-quality DNA and RNA for tumor sequencing and may be used to detect actionable alterations and resistance mechanisms in patients with bone metastases. Cancer 2018;124:1008-15. © 2017 American Cancer Society.


Assuntos
Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão/métodos , Estudos Prospectivos , Próstata/diagnóstico por imagem , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética
12.
Br J Haematol ; 181(5): 642-652, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29675955

RESUMO

BCR/ABL1-like acute lymphoblastic leukaemia (ALL) is a subgroup of B-lineage acute lymphoblastic leukaemia that occurs within cases without recurrent molecular rearrangements. Gene expression profiling (GEP) can identify these cases but it is expensive and not widely available. Using GEP, we identified 10 genes specifically overexpressed by BCR/ABL1-like ALL cases and used their expression values - assessed by quantitative real time-polymerase chain reaction (Q-RT-PCR) in 26 BCR/ABL1-like and 26 non-BCR/ABL1-like cases to build a statistical "BCR/ABL1-like predictor", for the identification of BCR/ABL1-like cases. By screening 142 B-lineage ALL patients with the "BCR/ABL1-like predictor", we identified 28/142 BCR/ABL1-like patients (19·7%). Overall, BCR/ABL1-like cases were enriched in JAK/STAT mutations (P < 0·001), IKZF1 deletions (P < 0·001) and rearrangements involving cytokine receptors and tyrosine kinases (P = 0·001), thus corroborating the validity of the prediction. Clinically, the BCR/ABL1-like cases identified by the BCR/ABL1-like predictor achieved a lower rate of complete remission (P = 0·014) and a worse event-free survival (P = 0·0009) compared to non-BCR/ABL1-like ALL. Consistently, primary cells from BCR/ABL1-like cases responded in vitro to ponatinib. We propose a simple tool based on Q-RT-PCR and a statistical model that is capable of easily, quickly and reliably identifying BCR/ABL1-like ALL cases at diagnosis.


Assuntos
Proteínas de Fusão bcr-abl , Regulação Leucêmica da Expressão Gênica , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Reação em Cadeia da Polimerase em Tempo Real , Adolescente , Adulto , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Proteínas de Fusão bcr-abl/biossíntese , Proteínas de Fusão bcr-abl/genética , Humanos , Lactente , Recém-Nascido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Valor Preditivo dos Testes , Taxa de Sobrevida
13.
medRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883731

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

14.
Nat Commun ; 15(1): 2009, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499531

RESUMO

The molecular characteristics of metastatic upper tract urothelial carcinoma (UTUC) are not well understood, and there is a lack of knowledge regarding the genomic and transcriptomic differences between primary and metastatic UTUC. To address these gaps, we integrate whole-exome sequencing, RNA sequencing, and Imaging Mass Cytometry using lanthanide metal-conjugated antibodies of 44 tumor samples from 28 patients with high-grade primary and metastatic UTUC. We perform a spatially-resolved single-cell analysis of cancer, immune, and stromal cells to understand the evolution of primary to metastatic UTUC. We discover that actionable genomic alterations are frequently discordant between primary and metastatic UTUC tumors in the same patient. In contrast, molecular subtype membership and immune depletion signature are stable across primary and matched metastatic UTUC. Molecular and immune subtypes are consistent between bulk RNA-sequencing and mass cytometry of protein markers from 340,798 single cells. Molecular subtypes at the single-cell level are highly conserved between primary and metastatic UTUC tumors within the same patient.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Genômica/métodos , Perfilação da Expressão Gênica , Transcriptoma
15.
Clin Cancer Res ; 29(15): 2933-2943, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223924

RESUMO

PURPOSE: Patients with neuroendocrine prostate cancer (NEPC) are often managed with immunotherapy regimens extrapolated from small-cell lung cancer (SCLC). We sought to evaluate the tumor immune landscape of NEPC compared with other prostate cancer types and SCLC. EXPERIMENTAL DESIGN: In this retrospective study, a cohort of 170 patients with 230 RNA-sequencing and 104 matched whole-exome sequencing data were analyzed. Differences in immune and stromal constituents, frequency of genomic alterations, and associations with outcomes were evaluated. RESULTS: In our cohort, 36% of the prostate tumors were identified as CD8+ T-cell inflamed, whereas the remaining 64% were T-cell depleted. T-cell-inflamed tumors were enriched in anti-inflammatory M2 macrophages and exhausted T cells and associated with shorter overall survival relative to T-cell-depleted tumors (HR, 2.62; P < 0.05). Among all prostate cancer types in the cohort, NEPC was identified to be the most immune depleted, wherein only 9 out of the 36 total NEPC tumors were classified as T-cell inflamed. These inflamed NEPC cases were enriched in IFN gamma signaling and PD-1 signaling compared with other NEPC tumors. Comparison of NEPC with SCLC revealed that NEPC had poor immune content and less mutations compared with SCLC, but expression of checkpoint genes PD-L1 and CTLA-4 was comparable between NEPC and SCLC. CONCLUSIONS: NEPC is characterized by a relatively immune-depleted tumor immune microenvironment compared with other primary and metastatic prostate adenocarcinoma except in a minority of cases. These findings may inform development of immunotherapy strategies for patients with advanced prostate cancer.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/metabolismo , Carcinoma Neuroendócrino/patologia , Microambiente Tumoral/genética
16.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798307

RESUMO

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.

17.
Sci Transl Med ; 15(684): eade1857, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812344

RESUMO

Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Feminino , Humanos , Animais , Camundongos , Mutação em Linhagem Germinativa , Leptina , Glândulas Mamárias Humanas/patologia , Fosfatidilinositol 3-Quinases , Proteína BRCA2 , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Dano ao DNA , Epitélio/patologia , Obesidade , Estrogênios , Mutação , Microambiente Tumoral
18.
Sci Adv ; 8(50): eabp8674, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516249

RESUMO

Studies to date have not resolved how diverse transcriptional programs contribute to the intratumoral heterogeneity of small cell lung carcinoma (SCLC), an aggressive tumor associated with a dismal prognosis. Here, we identify distinct and commutable transcriptional states that confer discrete functional attributes in individual SCLC tumors. We combine an integrative approach comprising the transcriptomes of 52,975 single cells, high-resolution measurement of cell state dynamics at the single-cell level, and functional and correlative studies using treatment naïve xenografts with associated clinical outcomes. We show that individual SCLC tumors contain distinctive proportions of stable cellular states that are governed by bidirectional cell state transitions. Using drugs that target the epigenome, we reconfigure tumor state composition in part by altering individual state transition rates. Our results reveal new insights into how single-cell transition behaviors promote cell state equilibrium in SCLC and suggest that facile plasticity underlies its resistance to therapy and lethality.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico
19.
Neurooncol Adv ; 4(1): vdac031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475276

RESUMO

Background: As our molecular understanding of pediatric central nervous system (CNS) tumors evolves, so too do diagnostic criteria, prognostic biomarkers, and clinical management decision making algorithms. Here, we explore the clinical utility of wide-breadth assays, including whole-exome sequencing (WES), RNA sequencing (RNA-seq), and methylation array profiling as an addition to more conventional diagnostic tools for pediatric CNS tumors. Methods: This study comprises an observational, prospective cohort followed at a single academic medical center over 3 years. Paired tumor and normal control specimens from 53 enrolled pediatric patients with CNS tumors underwent WES. A subset of cases also underwent RNA-seq (n = 28) and/or methylation array analysis (n = 27). Results: RNA-seq identified the driver and/or targetable fusions in 7/28 cases, including potentially targetable NTRK fusions, and uncovered possible rationalized treatment options based on outlier gene expression in 23/28 cases. Methylation profiling added diagnostic confidence (8/27 cases) or diagnostic subclassification endorsed by the WHO (10/27 cases). WES detected clinically pertinent tier 1 or tier 2 variants in 36/53 patients. Of these, 16/17 SNVs/INDELs and 10/19 copy number alterations would have been detected by current in-house conventional tests including targeted sequencing panels. Conclusions: Over a heterogeneous set of pediatric tumors, RNA-seq and methylation profiling frequently yielded clinically relevant information orthogonal to conventional methods while WES demonstrated clinically relevant added value primarily via copy number assessment. Longitudinal cohorts comparing targeted molecular pathology workup vs broader genomic approaches including therapeutic selection based on RNA expression data will be necessary to further evaluate the clinical benefits of these modalities in practice.

20.
Cell Rep ; 40(13): 111412, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170819

RESUMO

Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.


Assuntos
AMP Cíclico , Neoplasias , Humanos , Linhagem Celular , AMP Cíclico/metabolismo , Via de Sinalização Hippo , Fosforilação , Proteínas Serina-Treonina Quinases , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA