Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 102(3): 1327-1383, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166161

RESUMO

During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, ß, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and ß-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs, but also contribute to a plethora of previously undescribed functions.


Assuntos
Anidrases Carbônicas , Equilíbrio Ácido-Base , Animais , Humanos , Camundongos , Especificidade da Espécie , Peixe-Zebra
2.
Malar J ; 21(1): 189, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706028

RESUMO

BACKGROUND: Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS: In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS: Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS: The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.


Assuntos
Anopheles , Anidrases Carbônicas , Malária , Plasmodium , Vacinas , Animais , Anopheles/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Epitopos de Linfócito B , Humanos , Malária/prevenção & controle , Plasmodium falciparum/metabolismo , Vacinologia
3.
Appl Microbiol Biotechnol ; 106(11): 4065-4074, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35612631

RESUMO

We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, ß, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only ß- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s-1 and kcat/KM of 1.41 × 107 s-1 M-1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. KEY POINTS: • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.


Assuntos
Anidrases Carbônicas , Lacticaseibacillus rhamnosus , Acetazolamida/farmacologia , Dióxido de Carbono/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Sulfonamidas/farmacologia
4.
J Enzyme Inhib Med Chem ; 37(1): 1577-1586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35637617

RESUMO

A ß-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAß has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3- + H+ with a kcat of 1.1 × 105 s-1 and a kcat/Km of 7.58 × 106 M-1 × s-1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAß at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAß is subsequently proposed as a new drug target for which effective inhibitors can be designed.


Assuntos
Anidrases Carbônicas , Parasitos , Platelmintos , Salmo salar , Animais , Ânions/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Clonagem Molecular , Parasitos/genética , Platelmintos/genética , Salmo salar/genética
5.
J Enzyme Inhib Med Chem ; 35(1): 109-117, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687859

RESUMO

With the aim to obtain novel compounds possessing both strong affinity against human carbonic anhydrases and low toxicity, we synthesised novel thiourea and sulphonamide derivatives 3, 4 and 10, and studied their in vitro inhibitory properties against human CA I, CA II and CA IX. We also evaluated the toxicity of these compounds using zebrafish larvae. Among the three compounds, derivative 4 showed efficient inhibition against hCA II (KI = 58.6 nM). Compound 10 showed moderate inhibition against hCA II (KI = 199.2 nM) and hCA IX (KI = 147.3 nM), whereas it inhibited hCA I less weakly at micromolar concentrations (KI = 6428.4 nM). All other inhibition constants for these compounds were in the submicromolar range. The toxicity evaluation studies showed no adverse effects on the zebrafish larvae. Our study suggests that these compounds are suitable for further preclinical characterisation as potential inhibitors of hCA I, II and IX.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IV/antagonistas & inibidores , Anidrase Carbônica I/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Nitroimidazóis/farmacologia , Animais , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Larva/efeitos dos fármacos , Estrutura Molecular , Nitroimidazóis/síntese química , Nitroimidazóis/química , Relação Estrutura-Atividade , Peixe-Zebra
6.
Exp Dermatol ; 28(2): 202-206, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30489650

RESUMO

Wounds close by keratinocytes migrating from the edge of the wound and re-epithelializing the epidermis. It has been proposed that the major stimuli for wound closure are blood-derived growth factors, chemokines and cytokines. The small GTPase R-Ras, a known integrin activator, also regulates vascular permeability during angiogenesis, and blood vessels lacking R-Ras leak plasma proteins constantly. We explored whether the access to blood-derived proteins influences skin wound healing in R-Ras knockout (KO) mice. In skin wounds, R-Ras expression was mostly restricted to the vasculature in the granulation tissue. Angiogenic blood vessels in the R-Ras KO mice were significantly more permeable than in wild-type (WT) controls. Although the distances between epidermal tongues, and the panniculus carnosus muscles, were significantly longer in R-Ras KO than WT controls before the granulation tissue formation took place, there were no differences in the wound closure or re-epithelialization rates or granulation tissue formation. These findings were also corroborated in a special splint excision wound model. Our study shows that although R-Ras does not influence the skin wound healing itself, the blood vessels lacking R-Ras are leaky and thus could facilitate the access of blood-derived proteins to the wound.


Assuntos
Permeabilidade Capilar , Integrinas/metabolismo , Queratinócitos/metabolismo , Cicatrização , Proteínas ras/metabolismo , Animais , Movimento Celular , Epiderme/metabolismo , Feminino , Guanosina Trifosfato/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Neovascularização Patológica , Reepitelização , Pele/metabolismo , Dermatopatias/metabolismo , Proteínas ras/genética
7.
J Water Health ; 17(5): 717-727, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638023

RESUMO

This study aimed to detect the presence of Acanthamoeba spp. in different water resources of Zahedan, southeast of Iran, and also systematically reviewed all publications regarding Acanthamoeba in Iran (2005-2018). Fifty water samples were collected from different water resources in Zahedan. The positive samples were identified morphologically and subjected to polymerase chain reaction (PCR) using fragments of 18S rRNA. In the systematic review, data collection using particular terms was carried out using the following electronic databases including Science Direct, ISI Web of Science, MEDLINE, EBSCO, Scopus, and Google Scholar. A total of 17 (34%) samples were positive for Acanthamoeba spp., and nucleotide sequencing indicated that 15 samples (88.23%) belonged to the T4 genotype and the rest belonged to the T5 genotype. A total of 39 studies reported genotyping of Acanthamoeba spp. from various geographical areas of Iran and revealed that T4 (35 studies), T5 (19 studies), T3 (11 studies), T11 (8 studies), and T2 (6 studies) genotypes were the most prevalent in Iran. The T4 genotype of Acanthamoeba is a prevalent free-living amoeba and widely distributed not only in Zahedan but also in other provinces of Iran. Phylogenetic analysis reveals that A. castellanii and A. griffini predominantly colocalize with the T4 genotype.


Assuntos
Acanthamoeba/genética , Água Doce/parasitologia , Abastecimento de Água/estatística & dados numéricos , Monitoramento Ambiental , Genótipo , Irã (Geográfico) , Filogenia , RNA Ribossômico 18S
8.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802189

RESUMO

Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes that produce proteins that contribute to a variety of functions, including, but not limited to, the regulation of cell metabolism, antimicrobial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside reproduction, is called horizontal gene transfer (HGT). Previous data have shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes. ß-Carbonic anhydrase (ß-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We previously suggested the horizontal transfer of ß-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify ß-CA genes that might have been transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing ß-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of ß-CA genes among a wide variety of organisms. Our results identify the presence of ß-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of ß-CA genes from GIs of ancestral prokaryotes to protists.IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs is exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as environment- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical biochemical pathways, such as the regulation of pH homeostasis and electrolyte transfer. Among the six evolutionary families of CAs, ß-CA gene sequences are present in many bacterial species, which can be horizontally transferred to protists during evolution. This study shows the involvement of bacterial ß-CA gene sequences in the GIs and suggests their horizontal transfer to protists during evolution.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Anidrases Carbônicas/genética , Eucariotos/genética , Transferência Genética Horizontal , Ilhas Genômicas , Sequência de Aminoácidos , Bactérias/química , Bactérias/classificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Eucariotos/classificação , Eucariotos/enzimologia , Evolução Molecular , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Alinhamento de Sequência
9.
BMC Cancer ; 18(1): 584, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792187

RESUMO

BACKGROUND: Carbonic anhydrase related proteins (CARPs) VIII, X and XI functionally differ from the other carbonic anhydrase (CA) enzymes. Structurally, they lack the zinc binding residues, which are important for enzyme activity of classical CAs. The distribution pattern of the CARPs in fetal brain implies their role in brain development. In the adult brain, CARPs are mainly expressed in the neuron bodies but only weaker reactivity has been found in the astrocytes and oligodendrocytes. Altered expression patterns of CARPs VIII and XI have been linked to cancers outside the central nervous system. There are no reports on CARPs in human astrocytomas or oligodendroglial tumors. We wanted to assess the expression of CARPs VIII and XI in these tumors and study their association to different clinicopathological features and tumor-associated CAs II, IX and XII. METHODS: The tumor material for this study was obtained from surgical patients treated at the Tampere University Hospital in 1983-2009. CARP VIII staining was analyzed in 391 grade I-IV gliomas and CARP XI in 405 gliomas. RESULTS: CARP VIII immunopositivity was observed in 13% of the astrocytomas and in 9% of the oligodendrogliomas. Positive CARP XI immunostaining was observed in 7% of the astrocytic and in 1% of the oligodendroglial tumor specimens. In our study, the most benign tumors, pilocytic astrocytomas, did not express CARPs at all. In WHO grade II-IV astrocytomas, CARPs were associated with molecular events related to more benign behavior, which was the case with CARP VIII in oligodendrogliomas and oligoastrocytomas as well. CONCLUSIONS: The study observations suggest that the CARPs play a role in tumorigenesis of diffusively infiltrating gliomas. Furthermore, the molecular mechanisms beneath the cancer promoting qualities of CARPs have not yet been discovered. Thus, more studies concerning role of CARPs in oncogenesis are needed.


Assuntos
Astrocitoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglioma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Carcinogênese , Criança , Humanos , Pessoa de Meia-Idade , Adulto Jovem
10.
Exp Eye Res ; 166: 160-167, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031855

RESUMO

Ischemic retinopathy is a vision-threatening disease associated with chronic retinal inflammation and hypoxia leading to abnormal angiogenesis. Furin, a member of the proprotein convertase family of proteins, has been implicated in the regulation of angiogenesis due to its essential role in the activation of several angiogenic growth factors, including vascular endothelial growth factor-C (VEGF-C), VEGF-D and transforming growth factor - ß (TGF- ß). In the present study, we evaluated expression of furin in the retina and its role in retinal angiogenesis. As both inflammation and hypoxia contribute to angiogenesis, the role of furin was evaluated using myeloid-cell specific furin knockout (KO) mice (designated LysMCre-fur(fl/fl)) both in developmental retinal angiogenesis as well as in hypoxia-driven angiogenesis using the oxygen-induced retinopathy (OIR) model. In the retina, furin expression was detected in endothelial cells, macrophages and, to some extent, in neurons. The rate of angiogenesis was not different in LysMCre-fur(fl/fl) mice when compared to their wild-type littermates during development. In the OIR model, the revascularization of retina was significantly delayed in LysMCre-fur(fl/fl) mice compared to their wild-type littermates, while there was no compensatory increase in the preretinal neovascularization in LysMCre-fur(fl/fl) mice. These results demonstrate that furin expression in myeloid cells plays a significant role in hypoxia-induced angiogenesis in retina.


Assuntos
Furina/fisiologia , Células Mieloides/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Furina/deficiência , Furina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Neurônios Retinianos/metabolismo
11.
Eur J Haematol ; 101(4): 457-465, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29989208

RESUMO

Recent studies showed that several pseudokinases from the receptor tyrosine kinase family are important players in regulating cancer cell invasion, metastasis, and drug resistance, suggesting that targeting these proteins can play a therapeutic role in cancer treatment. Receptor Tyr kinase-like orphan receptors (RORs), protein Tyr kinase 7 (PTK7) (also called colon carcinoma kinase 4 (CCK4)), and receptor-like Tyr kinase (RYK) are Wnt ligand binding receptors within the non-canonical Wnt signaling, with important roles in development, tissue homeostasis, and organogenesis. At the cellular level, these receptors transduce signals important for cell survival, migration, polarization, and chemotaxis. Considerable progress has been made in the last decade in the field of pseudokinase signaling, improving our understanding of their structure-function mechanisms, and intracellular network of transduction components. Consequently, their role in various diseases, including cancer, is now scrutinized for therapeutic interventions to improve treatment outcome. In this article, we review findings regarding molecular mechanisms and targeted therapies for ROR1, PTK7, and RYK in hematological malignancies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hematológicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Humanos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Receptores de Antígenos de Linfócitos B/metabolismo
12.
J Enzyme Inhib Med Chem ; 33(1): 1064-1073, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29909747

RESUMO

Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5 mM. Neither compound showed apparent toxicity below 300 µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14 ± 0.02 µM for DTP338 and 19.26 ± 1.97 µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Nitroimidazóis/farmacologia , Oócitos/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium marinum/efeitos dos fármacos , Nitroimidazóis/síntese química , Nitroimidazóis/química , Oócitos/metabolismo , Relação Estrutura-Atividade , Xenopus , Peixe-Zebra/embriologia
13.
J Enzyme Inhib Med Chem ; 32(1): 832-840, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28629306

RESUMO

Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived ß-carbonic anhydrase (ß-CA) inhibitors Fc14-594 A and Fc14-584B effectively inhibit the activity of Mtb ß-CA enzymes. We screened the dithiocarbamates for toxicity, and studied the in vivo inhibitory effect of the least toxic inhibitor on M. marinum in a zebrafish model. In our toxicity screening, Fc14-584B emerged as the least toxic and showed minimal toxicity in 5-day-old larvae at 300 µM concentration. In vitro inhibition of M. marinum showed that both compounds inhibited growth at a concentration of 75 µM. In vivo inhibition studies using 300 µM Fc14-584B showed significant (p > .05) impairment of bacterial growth in zebrafish larvae at 6 days post infection. Our studies highlight the therapeutic potential of Fc14-584B as a ß-CA inhibitor against Mtb, and that dithiocarbamate compounds may be developed into potent anti-tuberculosis drugs.


Assuntos
Antituberculosos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Piperazinas/farmacologia , Tiocarbamatos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/síntese química , Antituberculosos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Tiocarbamatos/síntese química , Tiocarbamatos/química , Peixe-Zebra/microbiologia
14.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718799

RESUMO

Skin cancer, which includes melanoma and squamous cell carcinoma, represents the most common type of cutaneous malignancy worldwide, and its incidence is expected to rise in the near future. This condition derives from acquired genetic dysregulation of signaling pathways involved in the proliferation and apoptosis of skin cells. The development of animal models has allowed a better understanding of these pathomechanisms, with the possibility of carrying out toxicological screening and drug development. In particular, the zebrafish (Danio rerio) has been established as one of the most important model organisms for cancer research. This model is particularly suitable for live cell imaging and high-throughput drug screening in a large-scale fashion. Thanks to the recent advances in genome editing, such as the clustered regularly-interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) methodologies, the mechanisms associated with cancer development and progression, as well as drug resistance can be investigated and comprehended. With these unique tools, the zebrafish represents a powerful platform for skin cancer research in the development of target therapies. Here, we will review the advantages of using the zebrafish model for drug discovery and toxicological and phenotypical screening. We will focus in detail on the most recent progress in the field of zebrafish model generation for the study of melanoma and squamous cell carcinoma (SCC), including cancer cell injection and transgenic animal development. Moreover, we will report the latest compounds and small molecules under investigation in melanoma zebrafish models.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Humanos
15.
Transgenic Res ; 25(5): 649-64, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27209317

RESUMO

From birth, the respiratory tract mucosa is exposed to various chemical, physical, and microbiological stress factors. Efficient defense mechanisms and strictly regulated renewal systems in the mucosa are thus required. Carbonic anhydrase VI (CA VI) is the only secreted isoenzyme of the α-CA gene family. It is transported in high concentrations in saliva and milk into the alimentary tract where it contributes to optimal pH homeostasis. Earlier study of transcriptomic responses of Car6 (-/-) mice has shown changes in the response to oxidative stress and brown fat cell differentiation in the submandibular gland. It has been suggested that CA VI delivered to the mucosal surface of the bronchiolar epithelium is an essential factor in defense and renewal of the lining epithelium. In this study, the transcriptional effects of CA VI deficiency were investigated in both trachea and lung of Car6 (-/-) mice using a cDNA microarray analysis. Functional clustering of the results indicated significant changes of gene transcription in the lower airways. The altered biological processes included antigen transport by M-cells, potassium transport, muscle contraction, and thyroid hormone synthesis. Immunohistochemical staining confirmed the absence of CA VI in the submandibular gland of Car6 (-/-) mice. Immunostaining of the trachea and lung samples revealed no differences between the knockout and wild type groups nor were any morphological changes observed. The present findings can help us to recognize novel functions for CA VI-one of the major protein constituents of saliva and milk.


Assuntos
Anidrases Carbônicas/genética , Regulação da Expressão Gênica/genética , Sistema Respiratório/metabolismo , Transcriptoma/genética , Animais , Anidrases Carbônicas/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Leite/enzimologia , Mucosa/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas/genética , Mucosa Respiratória/metabolismo , Saliva/enzimologia , Glândula Submandibular/metabolismo , Traqueia/metabolismo
16.
J Enzyme Inhib Med Chem ; 31(sup4): 176-184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557594

RESUMO

Carbonic anhydrases (CAs) are metalloenzymes, and classified into the evolutionarily distinct α, ß, γ, δ, ζ, and η classes. α-CAs are present in many living organisms. ß- and γ-CAs are expressed in most prokaryotes and eukaryotes, except for vertebrates. δ- and ζ-CAs are present in phytoplanktons, and η-CAs have been found in Plasmodium spp. Since the identification of α- and ß-CAs in Caenorhabditis elegans, the nematode CAs have been considered as an emerging target in research focused on antiparasitic CA inhibitors. Despite the presence of α-CAs in both helminths and vertebrates, structural studies have revealed different kinetic and inhibition results. Moreover, lack of ß-CAs in vertebrates makes this enzyme as an attractive target for inhibitory studies against helminthic infection. Some CA inhibitors, such as sulfonamides, have been evaluated against nematode CAs. This review article aims to present comprehensive information about the nematode CAs and their inhibitors as potential anthelminthic drugs.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/análise , Anidrases Carbônicas/metabolismo , Nematoides/enzimologia , Sulfonamidas/farmacologia , Animais , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Humanos , Sulfonamidas/síntese química , Sulfonamidas/química
17.
J Enzyme Inhib Med Chem ; 30(3): 505-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25198895

RESUMO

Beta-carbonic anhydrases (ß-CAs) have been recently reported to be present in many protozoan and metazoan species, whereas it is absent in mammals. In this review, we introduce ß-CA from Drosophila melanogaster as a model enzyme for pesticide development. These enzymes can be targeted with various enzyme inhibitors, which can have deleterious effects on pathogenic and other harmful organisms. Therefore, ß-CAs represent a new potential target to fight against Dipteran vectors and pests relevant to medicine, veterinary medicine, and agriculture.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Praguicidas/farmacologia , Animais
18.
J Med Chem ; 67(1): 152-164, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38150360

RESUMO

Acanthamoeba castellanii is an amoeba that inhabits soil and water in every part of the world. Acanthamoeba infection of the eye causes keratitis and can lead to a loss of vision. Current treatment options are only moderately effective, have multiple harmful side effects, and are tedious. In our study, we developed a novel drug screening method to define the inhibitory properties of potential new drugs against A. castellanii in vitro. We found that the clinically used carbonic anhydrase inhibitors, acetazolamide, ethoxzolamide, and dorzolamide, have promising antiamoebic properties.


Assuntos
Acanthamoeba castellanii , Amoeba , Inibidores da Anidrase Carbônica/farmacologia , Avaliação Pré-Clínica de Medicamentos
19.
Bioorg Med Chem ; 21(6): 1503-10, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23022279

RESUMO

Carbonic anhydrase (CA) isozymes CA IV and CA XV are anchored on the extracellular cell surface via glycosylphosphatidylinositol (GPI) linkage. Analysis of evolution of these isozymes in vertebrates reveals an additional group of GPI-linked CAs, CA XVII, which has been lost in mammals. Our work resolves nomenclature issues in GPI-linked fish CAs. Review of expression data brings forth previously unreported tissue and cancer types in which human CA IV is expressed. Analysis of collective glycosylation patterns of GPI-linked CAs suggests functionally important regions on the protein surface.


Assuntos
Evolução Biológica , Animais , Anidrase Carbônica IV/classificação , Anidrase Carbônica IV/genética , Anidrase Carbônica IV/metabolismo , Anidrases Carbônicas/classificação , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Duplicação Gênica , Expressão Gênica , Glicosilação , Glicosilfosfatidilinositóis/química , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Filogenia
20.
Nat Commun ; 14(1): 8069, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057316

RESUMO

CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.


Assuntos
Sindecana-4 , Cicatrização , Masculino , Camundongos , Animais , Sindecana-4/genética , Sindecana-4/metabolismo , Cicatrização/fisiologia , Peptídeos/metabolismo , Epiderme/metabolismo , Células Epidérmicas/metabolismo , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA