Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Phytopathology ; 110(12): 1988-2002, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32602813

RESUMO

Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant-microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae-soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.


Assuntos
Phytophthora , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Doenças das Plantas , Raízes de Plantas , Glycine max
2.
J Exp Bot ; 70(19): 5041-5049, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31198972

RESUMO

The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory, and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan. This review highlights recent advances in our knowledge of TAA/YUC-dependent auxin biosynthesis focusing on membrane localization of auxin biosynthetic enzymes, differential regulation in root and shoot tissue, and auxin biosynthesis during abiotic stress.


Assuntos
Aclimatação , Adaptação Fisiológica , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Oxigenases de Função Mista/metabolismo , Estresse Fisiológico , Triptofano Transaminase/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(39): 11010-5, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27651492

RESUMO

Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:ß-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Biocatálise , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , DNA Bacteriano/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Metaboloma , Mutação/genética , Oxirredução , Fenótipo , Filogenia , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Fatores de Tempo
5.
Plant Physiol ; 173(1): 552-565, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837086

RESUMO

Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis.


Assuntos
Cinamatos/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Cinamatos/química , Cinamatos/farmacologia , Ciclina B/genética , Ciclina B/metabolismo , Regulação da Expressão Gênica de Plantas , Isomerismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Selaginellaceae/efeitos dos fármacos , Selaginellaceae/crescimento & desenvolvimento , Transdução de Sinais
6.
J Exp Bot ; 69(15): 3675-3688, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29912376

RESUMO

Plants use a tightly regulated immune system to fight off various pathogens. Phospholipase D (PLD) and its product, phosphatidic acid, have been shown to influence plant immunity; however, the underlying mechanisms remain unclear. Here, we show that the Arabidopsis mutants pldα1 and pldδ, respectively, exhibited enhanced resistance and enhanced susceptibility to both well-adapted and poorly adapted powdery mildew pathogens, and a virulent oomycete pathogen, indicating that PLDα1 negatively while PLDδ positively modulates post-penetration resistance. The pldα1δ double mutant showed a similar infection phenotype to pldα1, genetically placing PLDα1 downstream of PLDδ. Detailed genetic analyses of pldδ with mutations in genes for salicylic acid (SA) synthesis (SID2) and/or signaling (EDS1 and PAD4), measurement of SA and jasmonic acid (JA) levels, and expression of their respective reporter genes indicate that PLDδ contributes to basal resistance independent of EDS1/PAD4, SA, and JAsignaling. Interestingly, while PLDα1-enhanced green fluorescent protein (eGFP) was mainly found in the tonoplast before and after haustorium invasion, PLDδ-eGFP's focal accumulation to the plasma membrane around the fungal penetration site appeared to be suppressed by adapted powdery mildew. Together, our results demonstrate that PLDα1 and PLDδ oppositely modulate basal, post-penetration resistance against powdery mildew through a non-canonical mechanism that is independent of EDS1/PAD4, SA, and JA.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ascomicetos/fisiologia , Fosfolipase D/metabolismo , Doenças das Plantas/imunologia , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfolipase D/economia , Fosfolipase D/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal
7.
J Exp Bot ; 68(12): 3071-3089, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899081

RESUMO

Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.


Assuntos
Ácidos Indolacéticos/metabolismo , Metabolismo dos Lipídeos , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Transdução de Sinais , Estresse Fisiológico
8.
Plant Physiol ; 167(3): 1117-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25635112

RESUMO

AvrE family type III effector proteins share the ability to suppress host defenses, induce disease-associated cell death, and promote bacterial growth. However, despite widespread contributions to numerous bacterial diseases in agriculturally important plants, the mode of action of these effectors remains largely unknown. WtsE is an AvrE family member required for the ability of Pantoea stewartii ssp. stewartii (Pnss) to proliferate efficiently and cause wilt and leaf blight symptoms in maize (Zea mays) plants. Notably, when WtsE is delivered by a heterologous system into the leaf cells of susceptible maize seedlings, it alone produces water-soaked disease symptoms reminiscent of those produced by Pnss. Thus, WtsE is a pathogenicity and virulence factor in maize, and an Escherichia coli heterologous delivery system can be used to study the activity of WtsE in isolation from other factors produced by Pnss. Transcriptional profiling of maize revealed the effects of WtsE, including induction of genes involved in secondary metabolism and suppression of genes involved in photosynthesis. Targeted metabolite quantification revealed that WtsE perturbs maize metabolism, including the induction of coumaroyl tyramine. The ability of mutant WtsE derivatives to elicit transcriptional and metabolic changes in susceptible maize seedlings correlated with their ability to promote disease. Furthermore, chemical inhibitors that block metabolic flux into the phenylpropanoid pathways targeted by WtsE also disrupted the pathogenicity and virulence activity of WtsE. While numerous metabolites produced downstream of the shikimate pathway are known to promote plant defense, our results indicate that misregulated induction of phenylpropanoid metabolism also can be used to promote pathogen virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Pantoea/metabolismo , Propanóis/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Bioensaio , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genoma de Planta , Modelos Biológicos , Mutação/genética , Pantoea/efeitos dos fármacos , Pantoea/crescimento & desenvolvimento , Pantoea/patogenicidade , Fenilalanina Amônia-Liase/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Ácido Chiquímico/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tiramina , Virulência/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/genética
9.
J Exp Bot ; 66(20): 6471-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175354

RESUMO

fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Phytopathology ; 105(1): 126-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25496364

RESUMO

Mild variants of many viruses are able to protect infected plants from subsequent invasion by more severe variants of the same viruses through a process known as cross-protection. In the past, the cross-protective viral variants were commonly derived from mild field isolates that were sometimes genetically heterogeneous, providing variable levels of cross-protection. Here, we report a novel approach to rapidly generate cross-protective variants of the tomato-infecting Pepino mosaic virus (PepMV) independently of the availability of mild field isolates. Our approach sought to attenuate PepMV by mutating less conserved amino acid residues of the abundantly produced capsid protein (CP). These less-conserved amino acid residues were identified through multiple alignments of CPs of six potexviruses including PepMV, and were altered systematically to yield six PepMV mutants. These mutants were subsequently inoculated onto the model plant Nicotiana benthamiana, as well as tomato, to evaluate their accumulation levels, symptom severities, and cross-protection potentials. The mutant KD, in which the threonine (T) and alanine (A) residues at CP positions 66 and 67 were replaced with lysine (K) and aspartic acid (D), respectively, were found to accumulate to low levels in infected plants, cause very mild symptoms, and effectively protect both N. benthamiana and tomato against secondary infections by wild-type PepMV. These data suggest that our approach represents a simple, fast, and reliable way of generating attenuated viral variants capable of cross-protection.


Assuntos
Proteínas do Capsídeo/genética , Genoma Viral/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/genética , Solanum lycopersicum/virologia , Sequência de Aminoácidos , Proteção Cruzada , DNA Complementar/química , DNA Complementar/genética , Engenharia Genética , Dados de Sequência Molecular , Mutagênese , Mutação , Folhas de Planta/virologia , Potexvirus/patogenicidade , Potexvirus/fisiologia , RNA Viral/genética , Alinhamento de Sequência , Vírion
11.
Anal Methods ; 16(16): 2449-2455, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38563199

RESUMO

Carotenoids are yellow, orange, and red pigments commonly found in plants. In leaves, these molecules are essential for photosynthesis, but they also play a major role in plant growth and development. Efficiently monitoring concentrations of specific carotenoids in plant tissues could help to explain plant responses to environmental stressors, infection and disease, fertilization, and other conditions. Previously, Raman methods have been used to demonstrate a correlation between plant fitness and the carotenoid content of leaves. Due to solvatochromatic effects and structural similarities within the carotenoid family, current Raman spectroscopy techniques struggle to assign signals to specific carotenoids with certainty, complicating the determination of amounts of individual carotenoids present in a sample. In this work, we use thin layer chromatography-Raman spectroscopy, or TLC-Raman, to identify and quantify carotenoids extracted from tomato leaves. These quick and accurate methods could be applied to study the relationship between pigment content and a number of factors affecting plant health.


Assuntos
Carotenoides , Folhas de Planta , Solanum lycopersicum , Análise Espectral Raman , Folhas de Planta/química , Análise Espectral Raman/métodos , Cromatografia em Camada Fina/métodos , Carotenoides/análise , Carotenoides/química , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Pigmentos Biológicos/análise , Pigmentos Biológicos/química
12.
Plant J ; 69(4): 640-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21992190

RESUMO

Arabidopsis ATP-binding cassette B4 (ABCB4) is a root-localised auxin efflux transporter with reported auxin uptake activity in low auxin concentrations. Results reported here demonstrate that ABCB4 is a substrate-activated regulator of cellular auxin levels. The contribution of ABCB4 to shootward auxin movement at the root apex increases with auxin concentration, but in root hair elongation assays ABCB4-mediated uptake is evident at low concentrations as well. Uptake kinetics of ABCB4 heterologously expressed in Schizosaccharomyces pombe differed from the saturation kinetics of AUX1 as uptake converted to efflux at threshold indole-3-acetic acid (IAA) concentrations. The concentration dependence of ABCB4 appears to be a direct effect on transporter activity, as ABCB4 expression and ABCB4 plasma membrane (PM) localisation at the root apex are relatively insensitive to changes in auxin concentration. However, PM localization of ABCB4 decreases with 1-naphthylphthalamic acid (NPA) treatment. Unlike other plant ABCBs studied to date, and consistent with decreased detergent solubility, ABCB4(pro) :ABCB4-GFP is partially internalised in all cell types by 0.05% DMSO, but not 0.1% ethanol. In trichoblasts, ABCB4(pro) :ABCB4-GFP PM signals are reduced by >200 nm IAA and 2,4-dichlorophenoxyacetic acid (2,4-D). In heterologous systems and in planta, ABCB4 transports benzoic acid with weak affinity, but not the oxidative catabolism products 2-oxindole-3-acetic-acid and 2-oxindole-3-acetyl-ß-D-glucose. ABCB4 mediates uptake, but not efflux, of the synthetic auxin 2,4-D in cells lacking AUX1 activity. Results presented here suggest that 2,4-D is a non-competitive inhibitor of IAA transport by ABCB4 and indicate that ABCB4 is a target of 2,4-D herbicidal activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Indóis/metabolismo , Mutação , Oxindóis , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais/fisiologia , Nicotiana/genética , Nicotiana/metabolismo
13.
Plant J ; 63(6): 1004-16, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20626658

RESUMO

Indole-3-acetic acid (IAA) is a primary phytohormone that regulates multiple aspects of plant development. Because polar transport of IAA is an essential determinant of organogenesis and dynamic tropic growth, methods to monitor IAA movement in vivo are in demand. A self-referencing electrochemical microsensor was optimized to non-invasively measure endogenous IAA flux near the surface of Zea mays roots without the addition of exogenous IAA. Enhanced sensor surface modification, decoupling of acquired signals, and integrated flux analyses were combined to provide direct, real time quantification of endogenous IAA movement in B73 maize inbred and brachytic2 (br2) auxin transport mutant roots. BR2 is localized in epidermal and hypodermal tissues at the root apex. br2 roots exhibit reduced shootward IAA transport at the root apex in radiotracer experiments and reduced gravitropic growth. IAA flux data indicates that maximal transport occurs in the distal elongation zone of maize roots, and net transport in/out of br2 roots was decreased compared to B73. Integration of short term real time flux data in this zone revealed oscillatory patterns, with B73 exhibiting shorter oscillatory periods and greater amplitude than br2. IAA efflux and influx were inhibited using 1-N-naphthylphthalamic acid (NPA), and 2-naphthoxyacetic acid (NOA), respectively. A simple harmonic oscillation model of these data produced a correlation between modeled and measured values of 0.70 for B73 and 0.69 for br2. These results indicate that this technique is useful for real-time IAA transport monitoring in surface tissues and that this approach can be performed simultaneously with current live imaging techniques.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Transporte Biológico/efeitos dos fármacos , Eletrodos , Glicolatos/farmacologia , Ftalimidas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Zea mays/efeitos dos fármacos
14.
Microbiome ; 9(1): 11, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33431052

RESUMO

BACKGROUND: Non-caloric artificial sweeteners (NCAS) are widely used as a substitute for dietary sugars to control body weight or glycemia. Paradoxically, some interventional studies in humans and rodents have shown unfavorable changes in glucose homeostasis in response to NCAS consumption. The causative mechanisms are largely unknown, but adverse changes in gut microbiota have been proposed to mediate these effects. These findings have raised concerns about NCAS safety and called into question their broad use, but further physiological and dietary considerations must be first addressed before these results are generalized. We also reasoned that, since NCAS are bona fide ligands for sweet taste receptors (STRs) expressed in the intestine, some metabolic effects associated with NCAS use could be attributed to a common mechanism involving the host. RESULTS: We conducted a double-blind, placebo-controlled, parallel arm study exploring the effects of pure saccharin compound on gut microbiota and glucose tolerance in healthy men and women. Participants were randomized to placebo, saccharin, lactisole (STR inhibitor), or saccharin with lactisole administered in capsules twice daily to achieve the maximum acceptable daily intake for 2 weeks. In parallel, we performed a 10-week study administering pure saccharin at a high dose in the drinking water of chow-fed mice with genetic ablation of STRs (T1R2-KO) and wild-type (WT) littermate controls. In humans and mice, none of the interventions affected glucose or hormonal responses to an oral glucose tolerance test (OGTT) or glucose absorption in mice. Similarly, pure saccharin supplementation did not alter microbial diversity or composition at any taxonomic level in humans and mice alike. No treatment effects were also noted in readouts of microbial activity such as fecal metabolites or short-chain fatty acids (SCFA). However, compared to WT, T1R2-KO mice were protected from age-dependent increases in fecal SCFA and the development of glucose intolerance. CONCLUSIONS: Short-term saccharin consumption at maximum acceptable levels is not sufficient to alter gut microbiota or induce glucose intolerance in apparently healthy humans and mice. TRIAL REGISTRATION: Trial registration number NCT03032640 , registered on January 26, 2017. Video abstract.


Assuntos
Microbioma Gastrointestinal , Intolerância à Glucose , Voluntários Saudáveis , Sacarina/administração & dosagem , Sacarina/farmacologia , Adulto , Animais , Método Duplo-Cego , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Intolerância à Glucose/induzido quimicamente , Humanos , Masculino , Camundongos , Adulto Jovem
15.
Plant J ; 57(1): 27-44, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18774968

RESUMO

Auxin transport is mediated at the cellular level by three independent mechanisms that are characterised by the PIN-formed (PIN), P-glycoprotein (ABCB/PGP) and AUX/LAX transport proteins. The PIN and ABCB transport proteins, best represented by PIN1 and ABCB19 (PGP19), have been shown to coordinately regulate auxin efflux. When PIN1 and ABCB19 coincide on the plasma membrane, their interaction enhances the rate and specificity of auxin efflux and the dynamic cycling of PIN1 is reduced. However, ABCB19 function is not regulated by the dynamic cellular trafficking mechanisms that regulate PIN1 in apical tissues, as localisation of ABCB19 on the plasma membrane was not inhibited by short-term treatments with latrunculin B, oryzalin, brefeldin A (BFA) or wortmannin--all of which have been shown to alter PIN1 and/or PIN2 plasma membrane localisation. When taken up by endocytosis, the styryl dye FM4-64 labels diffuse rather than punctuate intracellular bodies in abcb19 (pgp19), and some aggregations of PIN1 induced by short-term BFA treatment did not disperse after BFA washout in abcb19. Although the subcellular localisations of ABCB19 and PIN1 in the reciprocal mutant backgrounds were like those in wild type, PIN1 plasma membrane localisation in abcb19 roots was more easily perturbed by the detergent Triton X-100, but not other non-ionic detergents. ABCB19 is stably associated with sterol/sphingolipid-enriched membrane fractions containing BIG/TIR3 and partitions into Triton X-100 detergent-resistant membrane (DRM) fractions. In the wild type, PIN1 was also present in DRMs, but was less abundant in abcb19 DRMs. These observations suggested a rationale for the observed lack of auxin transport activity when PIN1 is expressed in a non-plant heterologous system. PIN1 was therefore expressed in Schizosaccharomyces pombe, which has plant-like sterol-enriched microdomains, and catalysed auxin transport in these cells. These data suggest that ABCB19 stabilises PIN1 localisation at the plasma membrane in discrete cellular subdomains where PIN1 and ABCB19 expression overlaps.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Schizosaccharomyces/metabolismo , Esteróis/metabolismo
16.
J Exp Bot ; 61(13): 3689-96, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581123

RESUMO

Dwarfism traits in Zea mays are regulated by multiple factors including the hormone auxin. Dwarf brachytic2 (br2) mutants harbour lesions in the gene encoding an orthologue of Arabidopsis thaliana ABCB1 which functions in auxin efflux out of meristematic regions in the shoot and root. br2 mesocotyls and coleoptiles exhibit reduced auxin transport. However, the dwarf stature of br2 derives from shortened lower internodes whilst the upper portion of the plant is completely normal. As such, it is counter-intuitive to attribute br2 dwarfism exclusively to reduced auxin export out of the shoot apex. Arabidopsis abcb1 mutants exhibit only minor reductions in auxin transport and plant height unless combined with mutations in the ABCB19 auxin transporter. Phylogenetic modelling analysis excludes the possibility that BR2 is more closely related to ABCB19 which has three more closely related orthologues in maize. BR2 is expressed in nodal meristems, and analyses of auxin transport and content indicate that BR2 function in these grass-specific tissues is analogous to ABCB1 function in the shoot and root apex of Arabidopsis. These results indicate that ABCB1/BR2 function is conserved between dicots and monocots, but also suggests that this function must be understood in the context of the segmental organization of grass plants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Zea mays/genética , Zea mays/metabolismo , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Mutação/genética , Filogenia , Folhas de Planta/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas/classificação , Transdução de Sinais , Zea mays/classificação
17.
J Econ Entomol ; 113(6): 2972-2978, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033836

RESUMO

Host-plant resistance (HPR) is an important tool for pest management, affording both economic and environmental benefits. The mechanisms of aphid resistance in soybean are not well understood, but likely involve the induction of the jasmonic acid (JA) pathway, and possibly other phytohormone signals involved in plant defense responses. Despite the efficacy of aphid resistance in soybean, virulent aphids have overcome this resistance through mostly unknown mechanisms. Here, we have used metabolomic tools to define the role of plant phytohormones, especially the JA pathway, in regulating interactions between aphid-resistant soybean and virulent aphids. We hypothesized that virulent aphids avoid or suppress the JA pathway to overcome aphid resistance. Our results suggested that aphid-resistant soybean increased accumulation of JA-isoleucine (JA-Ile) only when infested with avirulent aphids; virulent aphids did not cause induction of JA-Ile. Further, applying JA-Ile to aphid-resistant soybean reduced subsequent virulent aphid populations. The concentrations of other phytohormones remained unchanged due to aphid feeding, highlighting the importance of JA-Ile in this interaction. These results increase our knowledge of soybean resistance mechanisms against soybean aphids and contribute to our understanding of aphid virulence mechanisms, which will in turn promote the durability of HPR.


Assuntos
Afídeos , Animais , Ciclopentanos , Isoleucina , Oxilipinas , Defesa das Plantas contra Herbivoria , Glycine max
18.
Plant Sci ; 293: 110437, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081274

RESUMO

Previous studies have demonstrated that the freezing tolerance (FT) of grapevine was enhanced by foliar application of exogenous abscisic acid (exo-ABA), a treatment which might be incorporated into cultural practices to mitigate cold damage in vineyards. To investigate the underlying mechanisms of this response, a two-year (2017 and 2018) study was conducted to characterize the effects of exo-ABA on greenhouse-grown 'Cabernet franc' grapevine. In control grapevines, both physiological (deeper dormancy) and biochemical (sugar accumulation in buds) changes occurred, indicating that grapevines initiated cold acclimation in the greenhouse. Compared to control, exo-ABA decreased stomatal conductance 2 h after application. Two weeks post application, exo-ABA treated grapevines showed accelerated transition of grapevine physiology during cold acclimation (increased depth of dormancy, decreased bud water content and enhanced bud FT), relative to control. Exo-ABA induced the accumulation of several sugars in buds including the raffinose family oligosaccharides (RFOs), and the RFO precursor, galactinol. The expression of raffinose and galactinol synthase genes was higher in exo-ABA treated grapevine buds, compared to control. The new findings from this study have advanced our understanding of the role of ABA in grapevine FT, which will be useful to develop future strategies to protect grapevines from cold damage.


Assuntos
Ácido Abscísico/metabolismo , Aclimatação/fisiologia , Temperatura Baixa , Vitis/metabolismo , Aclimatação/genética , Metabolismo dos Carboidratos , Congelamento , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Rafinose/metabolismo , Açúcares/metabolismo , Vitis/genética , Água/metabolismo
19.
Poult Sci ; 99(1): 517-525, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32416838

RESUMO

The phenotype of modern commercial turkeys is substantially different than that of unselected, heritage turkey lines. These phenotypic changes have arisen from alterations in the genome/transcriptome, as well as the influence of many external factors on growth performance including nutrition, environment, and management. To investigate the phenotypic changes resulting from genetic selection for increased body weight, The Ohio State University maintains 2 unique genetic turkey lines: the randombred control (RBC2) line, which is comprised of genetics from 1960 era commercial turkeys and has been maintained without conscious selection for any trait; and the F line, which was originally selected from the RBC2 line and has been selected for increased 16 wk body weight for over 50 generations. This study used broad-spectrum mass-spectrometry profiling techniques to identify and quantify differences in the metabolome of the serum of F and RBC2 turkey lines. Serum samples from both F and RBC2 turkeys were subject to quantitative time of flight liquid chromatography tandem mass spectrometry analyses. Principle component analyses showed distinct populations of metabolites in the F vs. RBC2 serum, suggesting that increased body weight is associated with the accumulation of several metabolites. Comparing the spectral features to online databases resulted in the selection of 104 features with potentially identifiable chemical structures. Of these 104 features, 25 were found at higher levels in the serum of the RBC2 line turkeys, while 79 were found at a greater abundance in the F line turkeys. A more detailed analysis of these 104 features allowed for the putative identification of 49 compounds, which were clustered into 6 functional groups: 1) energy metabolism; 2) vitamins; 3) hormones and signaling molecules; 4) lipid derivatives, fatty acid metabolites, and membrane components; 5) amino acid/protein metabolism; and 6) microbial metabolites. Further validation and experimentation is needed to confirm the identity of these metabolites and understand their biological relevance and association with selection for increased body weight.


Assuntos
Metaboloma , Seleção Genética , Perus/genética , Perus/metabolismo , Animais , Proteínas Aviárias/análise , Análise Química do Sangue/veterinária , Masculino , Perus/sangue
20.
Biomaterials ; 239: 119839, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065973

RESUMO

Differences in glucose uptake in peripheral and neural tissues account for the reduced efficacy of insulin in nervous tissues. Herein, we report the design of short peptides, referred as amino acid compounds (AAC) with and without a modified side chain moiety. At nanomolar concentrations, a candidate therapeutic molecule, AAC2, containing a 7-(diethylamino) coumarin-3-carboxamide side-chain improved glucose control in human peripheral adipocytes and the endothelial brain barrier cells by activation of insulin-insensitive glucose transporter 1 (GLUT1). AAC2 interacted specifically with the leptin receptor (LepR) and activated atypical protein kinase C zeta (PKCς) to increase glucose uptake. The effects induced by AAC2 were absent in leptin receptor-deficient predipocytes and in Leprdb mice. In contrast, AAC2 established glycemic control altering food intake in leptin-deficient Lepob mice. Therefore, AAC2 activated the LepR and acted in a cytokine-like manner distinct from leptin. In a monogenic Ins2Akita mouse model for the phenotypes associated with type 1 diabetes, AAC2 rescued systemic glucose uptake in these mice without an increase in insulin levels and adiposity, as seen in insulin-treated Ins2Akita mice. In contrast to insulin, AAC2 treatment increased brain mass and reduced anxiety-related behavior in Ins2Akita mice. Our data suggests that the unique mechanism of action for AAC2, activating LepR/PKCς/GLUT1 axis, offers an effective strategy to broaden glycemic control for the prevention of diabetic complications of the nervous system and, possibly, other insulin insensitive or resistant tissues.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Aminoácidos , Animais , Ansiedade , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina , Camundongos , Camundongos Endogâmicos C57BL , Receptores para Leptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA