Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nano Lett ; 22(7): 2618-2626, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35364813

RESUMO

Atmospheric water harvesting (AWH) has received tremendous interest because of population growth, limited freshwater resources, and water pollution. However, key challenges remain in developing efficient, flexible, and lightweight AWH materials with scalability. Here, we demonstrated a radiative cooling fabric for AWH via its hierarchically structured cellulose network and hybrid sorption-dewing mechanisms. With 8.3% solar absorption and ∼0.9 infrared (IR) emissivity, the material can drop up to 7.5 °C below ambient temperature without energy consumption via radiative cooling. Water adsorption onto the hydrophilic functional groups of cellulose is dominated by sorption at low relative humidity (RH) and dewing at high RH. The cellulose network provides desirable mechanical properties with entangled high-aspect-ratio fibers over tens of adsorption-extraction cycles. In the field test, the cellulose sample exhibited water uptake of 1.29 kg/kg at 80% RH during the night. The profusion of radiative cooling fabric features desirable cost effectiveness and allows fast deployment into large-scale AWH applications.


Assuntos
Celulose , Água , Temperatura Baixa , Transição de Fase , Têxteis
2.
Phys Chem Chem Phys ; 19(20): 12784-12793, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28485750

RESUMO

First-principles calculations revealing insulator-to-metal transitions in Bi2Te3 and Bi2Te2Se, at 9 GPa and 12.5 GPa, respectively, match with prior experiments. Our electronic band structure calculations and accompanying Boltzmann transport calculations of thermoelectric properties for Bi2-xSbxTe2-ySey alloys explain and predict large power factor changes induced by pressure. Complex band degeneracy changes preceding insulator-to-metal transitions significantly alter the density of states near the Fermi level, and foster the disentangling of the unfavorable coupling between Seebeck coefficient and electrical conductivity. Our findings on pressure-induced changes in thermoelectric power factor provide insights for designing V2VI3-based high-performance thermoelectric materials through strategies such as alloying, high-pressure processing, and strain engineering.

3.
Nanotechnology ; 27(17): 175601, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26965359

RESUMO

We report a rapid synthesis approach to obtain branched Ag nanowires by microwave-stimulated polyvinylpyrrolidone-directed polyol-reduction of silver nitrate. Microwave exposure results in micrometer-long nanowires passivated with polyvinylpyrrolidone. Cooling the reaction mixture by interrupting microwave exposure promotes nanocrystal nucleation at low-surfactant coverage sites. The nascent nuclei grow into nanowire branches upon further microwave exposure. Dispersions of low fractions of the branched nanowires in polydimethylsiloxane yield up to 60% higher thermal conductivity than that obtained using unbranched nanowire fillers. Our findings should be useful for realizing nanocomposites with tailored thermal transport properties for applications.

4.
Nanotechnology ; 26(5): 055301, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25580876

RESUMO

We present a facile strategy for the directed self-assembly of gold nanorods (AuNRs) in patterned block copolymer (BCP) thin films. Parallel arrangement of AuNRs relative to the geometric confinement generated by selective removal of one block domain was achieved. Deposition of AuNRs with aspect ratios from 3.3 to 5.8 was accomplished and the alignment of the NRs within the channels was controlled primarily by capillary forces and the channel geometry. Ordered AuNR assembly in the BCP pattern can be achieved at high surface coverages, >30%, though the surface coverage depends on the aspect ratio of the NRs. Larger NRs align in the channels more readily, but pack at slightly lower densities.

5.
Nat Mater ; 11(3): 233-40, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22231596

RESUMO

Obtaining thermoelectric materials with high figure of merit ZT is an exacting challenge because it requires the independent control of electrical conductivity, thermal conductivity and Seebeck coefficient, which are often unfavourably coupled. Recent works have devised strategies based on nanostructuring and alloying to address this challenge in thin films, and to obtain bulk p-type alloys with ZT>1. Here, we demonstrate a new class of both p- and n-type bulk nanomaterials with room-temperature ZT as high as 1.1 using a combination of sub-atomic-per-cent doping and nanostructuring. Our nanomaterials were fabricated by bottom-up assembly of sulphur-doped pnictogen chalcogenide nanoplates sculpted by a scalable microwave-stimulated wet-chemical method. Bulk nanomaterials from single-component assemblies or nanoplate mixtures of different materials exhibit 25-250% higher ZT than their non-nanostructured bulk counterparts and state-of-the-art alloys. Adapting our synthesis and assembly approach should enable nanobulk thermoelectrics with further increases in ZT for transforming thermoelectric refrigeration and power harvesting technologies.


Assuntos
Nanoestruturas/química , Condutividade Térmica , Ligas/química , Nanoestruturas/classificação , Propriedades de Superfície
6.
Nano Lett ; 12(9): 4523-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22891784

RESUMO

Antimony telluride has a low thermoelectric figure of merit (ZT < ∼0.3) because of a low Seebeck coefficient α arising from high degenerate hole concentrations generated by antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10-25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications.


Assuntos
Antimônio/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Enxofre/química , Telúrio/química , Transferência de Energia , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Condutividade Térmica
7.
Nanoscale Adv ; 4(16): 3353-3361, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131711

RESUMO

Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca3Co4O9 films can be engineered through nanoporosity control by annealing multiple Ca(OH)2/Co3O4 reactant bilayers with characteristic bilayer thicknesses (b t ). Our results show that doubling b t , e.g., from 12 to 26 nm, more than triples the average pore size from ∼120 nm to ∼400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of σ ∼ 90 S cm-1 and a high Seebeck coefficient of α ∼ 135 µV K-1, but also a thermal conductivity as low as κ ∼ 0.87 W m-1 K-1. The nanoporous Ca3Co4O9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.

8.
Langmuir ; 27(6): 2211-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21338112

RESUMO

This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.

9.
Nanoscale Adv ; 3(3): 692-702, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36133831

RESUMO

Thermal conductivity measurements using Scanning Thermal Microscopy (SThM) usually involve heat transfer across the mechanical contact and liquid meniscus between the thermal probe and the sample. However, variations in contact conditions due to capillary effects at probe-sample contact and probe and sample wear due to mechanical contact interfere with accurate determination of the thermal conductivity. This paper presents measurements of thin film thermal conductivity using a SThM method employing a Wollaston probe in non-contact mode in synergy with detailed heat transfer analysis. In this technique, the thermal probe is scanned above the sample at a distance comparable with the mean free path of the ambient gas molecules. A Three-Dimensional Finite Element Model (3DFEM) that includes the specifics of the heat transfer between the sample and the probe in transition heat conduction regime was developed to predict the SThM probe thermal resistance and fit the thermal conductivity of the measured thin films. Proof-of-concept experimental in-plane thermal conductivity results for 240 nm and 46.6 nm Au films deposited on glass and silicon substrates were validated by experimental measurements of their electrical conductivity coupled with the Wiedemann-Franz law, with a discrepancy < 6.4%. Moreover, predictions based on a kinetic theory model for thin-film thermal conductivity agreed with the experimental results for the Au films with <6.6% discrepancy. To reduce the time and complexity of data analysis and facilitate experimental planning, an analytical model was also developed for the thermal transport between the Wollaston probe, ambient, and film-on-substrate samples. The accuracy of thin film thermal conductivity measurements using the analytical model was investigated using 3DFEM simulations. Fitted functions were developed for fast data analysis of thermal conductivity of thin films in the range of ∼100-600 W m-1 K-1 and thickness between ∼50-300 nm deposited on the two types of substrates investigated in this work, which yielded results with a discrepancy of 6-16.7% when compared to the Au films' thermal conductivity values.

10.
Rev Sci Instrum ; 91(1): 014901, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012522

RESUMO

Temperature measurement using Scanning Thermal Microscopy (SThM) usually involves heat transfer across the mechanical contact and liquid meniscus between the thermometer probe and the sample. Variations in contact conditions due to capillary effects at sample-probe contact and wear and tear of the probe and sample interfere with the accurate determination of the sample surface temperature. This paper presents a method for quantitative temperature sensing using SThM in noncontact mode. In this technique, the thermal probe is scanned above the sample at a distance comparable with the mean free path of ambient gas molecules. A Three-Dimensional Finite Element Model (3DFEM) that includes the details of the heat transfer between the sample and the probe in the diffusive and transition heat conduction regimes was found to accurately simulate the temperature profiles measured using a Wollaston thermal probe setup. In order to simplify the data reduction for the local sample temperature, analytical models were developed for noncontact measurements using Wollaston probes. Two calibration strategies (active calibration and passive calibration) for the sample-probe thermal exchange parameters are presented. Both calibration methods use sample-probe thermal exchange resistance correlations developed using the 3DFEM to accurately capture effects due to sample-probe gap geometry and the thermal exchange radii in the diffusive and transition regimes. The analytical data reduction methods were validated by experiments and 3DFEM simulations using microscale heaters deposited on glass and on dielectric films on silicon substrates. Experimental and predicted temperature profiles were independent of the probe-sample clearance in the range of 100-200 nm, where the sample-probe thermal exchange resistance is practically constant. The difference between the SThM determined and actual average microheater temperature rise was between 0.1% and 0.5% when using active calibration on samples with known thermal properties and between ∼1.6% and 3.5% when using passive calibration, which yields robust sample-probe thermal exchange parameters that can be used also on samples with unknown thermal properties.

11.
Nanotechnology ; 20(18): 185702, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420625

RESUMO

This work investigates the effect of size and concentration of nanoparticles on the effective gas-liquid surface tension of aqueous solutions of bismuth telluride nanoparticles functionalized with thioglycolic acid. The gas-liquid surface tension is obtained by solving the Laplace-Young equation under experimentally measured boundary conditions and droplet parameters. The results demonstrate that the gas-liquid surface tension depends on concentration as well as nanoparticle size. Solutions containing 2.5 and 10.4 nm nanoparticle diameters have been tested. For both, a minimum surface tension exists within the range of tested mass concentrations. The largest reduction in the surface tension (>50% versus bulk liquid) occurred for the 2.5 nm nanoparticle nanofluid. Accumulation and assembly of the charged nanoparticles at the liquid-gas interface was assumed to be responsible for the surface tension of the nanofluids investigated in this work.


Assuntos
Bismuto/química , Cristalização/métodos , Gases/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Telúrio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Soluções , Propriedades de Superfície , Tensão Superficial
12.
Adv Mater ; 20(14): 2679-83, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25213889

RESUMO

Branched core/shell bismuth telluride/bismuth sulfide nanorod heterostructures are prepared by using a biomimetic surfactant, L-glutathionic acid. Trigonal nanocrystals of bismuth telluride are encapsulated by nanoscopic shells of orthorhombic bismuth sulfide. Crystallographic twinning causes shell branching. Such heteronanostructures are attractive for thermoelectric power generation and cooling applications.

13.
J Nanosci Nanotechnol ; 8(1): 416-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18468093

RESUMO

We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices.

14.
Rev Sci Instrum ; 88(7): 074903, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764517

RESUMO

Simplified heat-transfer models are widely employed by heated probe scanning thermal microscopy techniques for determining thermal conductivity of test samples. These parameters have generally been assumed to be independent of sample properties; however, there has been little investigation of this assumption in non-contact mode, and the impact calibration procedures have on sample thermal conductivity results has not been explored. However, there has been little investigation of the commonly used assumption that thermal exchange parameters are sample independent in non-contact mode, or of the impact calibration procedures have on sample thermal conductivity results. This article establishes conditions under which quantitative, localized, non-contact measurements using scanning thermal microscopy with heated microprobes may be most accurately performed. The work employs a three-dimensional finite element (3DFE) model validated using experimental results and no fitting parameters, to determine the dependence of a heated microprobe thermal resistance as a function of sample thermal conductivity at several values of probe-to-sample clearance. The two unknown thermal exchange parameters were determined by fitting the 3DFE simulated probe thermal resistance with the predictions of a simplified probe heat transfer model, for two samples with different thermal conductivities. This calibration procedure known in experiments as the intersection method was simulated for sample thermal conductivities in the range of 0.1-50 W m-1 K-1 and clearance values in the 260-1010 nm range. For a typical Wollaston wire microprobe geometry as simulated here, both the thermal exchange radius and thermal contact resistance were found to increase with the sample thermal conductivity in the low thermal conductivity range while they remained approximately constant for thermal conductivities >1 W m-1 K-1, with similar trends reported for all clearance values investigated. It is shown that versatile sets of calibration samples for the intersection method should employ either medium range (1 W m-1 K-1) and (2 W m-1 K-1) thermal conductivities, or wide range (0.5 W m-1 K-1) and (50 W m-1 K-1). The medium range yielded results within 1.5%-20.4% of the expected values of thermal conductivity for specimens with thermal conductivity within 0.1-10 W m-1 K-1, while the wide range yielded values within 0.5%-19.4% in the same range.

15.
ACS Appl Mater Interfaces ; 9(3): 2001-2005, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27957839

RESUMO

Controlling electrical transport across metal-thermoelectric interfaces is key to realizing high efficiency devices for solid state refrigeration and waste-heat harvesting. We obtain up to 17-fold increases in electrical contact conductivity Σc by inserting a mercaptan-terminated organosilane monolayer at Cu-Bi2Te3 and Ni-Bi2Te3 interfaces, yielding similar Σc for both metals by offsetting an otherwise 7-fold difference. The Σc improvements are underpinned by silane-moiety-induced inhibition of Cu diffusion, promotion of high-conductivity interfacial nickel telluride formation, and mercaptan-induced reduction of Bi2Te3 surface oxides. Our findings should enable incorporating nanomolecular layers with appropriately chosen terminal moieties in thermoelectric device metallization schemes without metal diffusion barriers.

16.
ACS Appl Mater Interfaces ; 8(7): 4275-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26842392

RESUMO

We report a 13-fold increase in electrical contact conductivity Σc upon introducing a 1,8-octanedithiol (ODT) monolayer at Cu-Bi2Te3 interfaces. In contrast introducing ODT at Ni-Bi2Te3 interfaces results in a 20% decrease in Σc. Rutherford backscattering spectrometry, X-ray diffraction and electron spectroscopy analyses indicate that metal-sulfur and sulfur-Bi2Te3 bonds at metal-Bi2Te3 interfaces inhibit chemical mixing, curtail metal-telluride formation, and suppress oxidation. Suppressing p-type Cu2Te favors electrical transport across Cu-metallized n-type Bi2Te3, whereas inhibiting the formation of Ohmic-contact-promoting NixTey compromises the electrical conductance at Ni-Bi2Te3 interfaces. Our findings illustrate that molecular nanolayers could be attractive for manipulating interface chemistry and phase formation for tailoring electrical transport across metal-thermoelectric interfaces for solid-state refrigeration applications.

17.
Adv Mater ; 28(30): 6436-41, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27167512

RESUMO

Dilute isovalent sulfur doping simultaneously increases electrical conductivity and Seebeck coefficient in Bi2 Te2 Se nanoplates, and bulk pellets made from them. This unusual trend at high electron concentrations is underpinned by multifold increases in electron effective mass attributable to sulfur-induced band topology effects, providing a new way for accessing a high thermoelectric figure-of-merit in topological-insulator-based nanomaterials through doping.

18.
Sci Rep ; 6: 19129, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26776726

RESUMO

Highly oriented [1 1 0] Bi2Te3 films were obtained by pulsed electrodeposition. The structure, composition, and morphology of these films were characterized. The thermoelectric figure of merit (zT), both parallel and perpendicular to the substrate surface, were determined by measuring the Seebeck coefficient, electrical conductivity, and thermal conductivity in each direction. At 300 K, the in-plane and out-of-plane figure of merits of these Bi2Te3 films were (5.6 ± 1.2)·10(-2) and (10.4 ± 2.6)·10(-2), respectively.

20.
Nanoscale ; 7(9): 4256-7, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25668105

RESUMO

Correction for 'Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials' by Miguel Muñoz Rojo et al., Nanoscale, 2014, 6, 7858-7865.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA