RESUMO
INTRODUCTION: Parkinson's disease (PD) has a complex genetic background involving both rare and common genetic variants. Although a small percentage of cases show a clear Mendelian inheritance pattern, it is much more relevant to identify patients who present with a complex genetic profile of risk variants with different severity. The ß-glucocerebrosidase coding gene (GBA1) is recognized as the most frequent genetic risk factor for PD and Lewy body dementia, irrespective of reduction of the enzyme activity due to genetic variants. METHODS: In a selected cohort of 190 Hungarian patients with clinical signs of PD and suspected genetic risk, we performed the genetic testing of the GBA1 gene. As other genetic hits can modify clinical features, we also screened for additional rare variants in other neurodegenerative genes and assessed the APOE-ε genotype of the patients. RESULTS: In our cohort, we identified 29 GBA1 rare variant (RV) carriers. Out of the six different detected RVs, the highly debated E365K and T408M variants are composed of the majority of them (22 out of 32). Three patients carried two GBA1 variants, and an additional three patients carried rare variants in other neurodegenerative genes (SMPD1, SPG11, and SNCA). We did not observe differences in age at onset or other clinical features of the patients carrying two GBA1 variants or patients carrying heterozygous APOE-ε4 allele. CONCLUSION: We need further studies to better understand the drivers of clinical differences in these patients, as this could have important therapeutic implications.
Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Doença de Parkinson/genética , Hungria , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos de Coortes , Predisposição Genética para Doença/genética , Idoso de 80 Anos ou maisRESUMO
Pompe disease (PD) is a rare lysosomal disease caused by the deficient activity of acid alpha-glucosidase (GAA) enzyme due to mutations in the GAA gene. The enzymatic deficiency leads to the accumulation of glycogen within the lysosomes. Clinically, the disease has been classically classified in infantile and childhood/adult forms. Presently cc. close to 600 mutations distributed throughout the whole gene have been reported. The c.-32-13T>G splice mutation that is very common in patients of Caucasian origin affected by the childhood/adult form of the disease, with an allelic frequency close to 70%. Enzyme replacement treatment (ERT) is available for the patients with Pompe disease (Myozyme). In this paper, we are presenting the long term follow up of 13 adult onset cases treated more than 5 years. The longest follow up was 15 years. To evaluate the treatment efficacy, the 6 minutes walking test (6MWT) and the respiratory functions were monitored annually. The analysis revealed that at the beginning of ERT for 3-4 years the 6MWT had been generally increasing, then it declined, and after 10 years it was lower in 77% of the cases than it had been at the start of the treatment. In 23% of the cases the 6MWT increased during the follow up time. Only one of the patients become wheelchair dependent during the follow-up period. The respiratory function showed similar results especially in supine position. A high degree of variability was observed among patients in their responses to the treatment, which only partially associated with the antibody titer against the therapeutic protein. The efficacy of the ERT was associated with the type of the disease causing mutation, the baseline status of the disease, the lifestyle and the diet of the patient. The long-term follow up of the patients with innovative orphan drugs is necessary to really understand the value of the treatment and the need of the patients.
Assuntos
Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/terapia , alfa-Glucosidases/genética , Adulto , Criança , Seguimentos , Humanos , Mutação , Resultado do Tratamento , Teste de CaminhadaRESUMO
In Huntington's disease (HD), the main clinical symptoms include depression, apathy, cognitive deficits, motor deficiencies and involuntary movements. Cognitive, mood and behavioral changes may precede motor symptoms by up to 15 years. The treatment of these diverse symptoms is challenging. Tetrabenazine and deutetrabenazine are the only medications specifically approved for Huntington's chorea, but they do not affect the non-motor symptoms. For these, antidepressants, antipsychotics, and benzodiazepines have demonstrated benefit in some cases and can be used off-label. These drugs, due to sedative side effects, may negatively influence cognition. Sixteen patients having HD received a 12-week off-label cariprazine (CAR) treatment (1.5-3 mg/day). Cognitive performance and behavioral changes were measured by the Addenbrooke Cognitive Examination (ACE) test, the Cognitive and Behavioral part of the Unified Huntington's Disease Rating Scale (UHDRS), and the Beck Depression Inventory (BDI). Mixed model for repeated measures was fitted to the data, with terms of visit, baseline (BL) and their interaction. Cariprazine treatment resulted in the following changes from BL to week 12, respectively: the mean score of BDI decreased from 17.7 ± 10.7 to 10.0 ± 10.7 (p <0.0097), while the Behavioral Assessment score of the UHDRS decreased from 54.9 ± 11.3 to 32.5 ± 15.4 (p < 0.0001); ACE score increased from 75.1 ± 11.0 to 89.0 ± 9.3 (p < 0.0001); Cognitive Verbal Fluency score from 6.2 ± 2.5 to 7.7 ± 2.7 (p < 0.0103); Symbol Digit Test from 9.2 ± 6.9 to 12.3 ± 8.9 (p < 0.0009). Mild akathisia was the most frequent side effect, presenting in 2 out of 16 patients (12.5%). We conclude that CAR had a positive effect on depressive mood, apathy and cognitive functions in patients with early stage of HD. Based on the neurobiological basis of these symptoms, CAR can improve the dopamine imbalance of the prefrontal cortex. This draws attention to the transdiagnostic approach which supports the further understanding of the similar symptomatology of different neuropsychiatric disorders and helps to identify new indications of pharmaceutical compounds.
RESUMO
Pompe disease is caused by the accumulation of glycogen in the lysosomes due to a deficiency of the lysosomal acid-α-glucosidase (GAA) enzyme. Depending on residual enzyme activity, the disease manifests two distinct phenotypes. In this study, we assess an enzymatic and genetic analysis of Hungarian patients with Pompe disease. Twenty-four patients diagnosed with Pompe disease were included. Enzyme activity of acid-α-glucosidase was measured by mass spectrometry. Sanger sequencing and an MLPA of the GAA gene were performed in all patients. Twenty (83.33%) patients were classified as having late-onset Pompe disease and four (16.66%) had infantile-onset Pompe disease. Fifteen different pathogenic GAA variants were detected. The most common finding was the c.-32-13 T > G splice site alteration. Comparing the α-glucosidase enzyme activity of homozygous cases to the compound heterozygous cases of the c.-32-13 T > G disease-causing variant, the mean GAA activity in homozygous cases was significantly higher. The lowest enzyme activity was found in cases where the c.-32-13 T > G variant was not present. The localization of the identified sequence variations in regions encoding the crucial protein domains of GAA correlates with severe effects on enzyme activity. A better understanding of the impact of pathogenic gene variations may help earlier initiation of enzyme replacement therapy (ERT) if subtle symptoms occur. Further information on the effect of GAA gene variation on the efficacy of treatment and the extent of immune response to ERT would be of importance for optimal disease management and designing effective treatment plans.