Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(13): 7891-7900, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490674

RESUMO

Very high spatially resolved satellite-derived ground-level concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) have multiple potential applications, especially in air quality modeling and epidemiological and climatological research. Satellite-derived aerosol optical depth (AOD) and columnar water vapor (CWV), meteorological parameters, and land use data were used as variables within the framework of a linear mixed effect model (LME) and a random forest (RF) model to predict daily ground-level concentrations of PM2.5 at 1 km × 1 km grid resolution across the Indo-Gangetic Plain (IGP) in South Asia. The RF model exhibited superior performance and higher accuracy compared with the LME model, with better cross-validated explained variance (R2 = 0.87) and lower relative prediction error (RPE = 24.5%). The RF model revealed improved performance metrics for increasing averaging periods, from daily to weekly, monthly, seasonal, and annual means, which supported its use in estimating PM2.5 exposure metrics across the IGP at varying temporal scales (i.e., both short and long terms). The RF-based PM2.5 estimates showed high PM2.5 levels over the middle and lower IGP, with the annual mean exceeding 110 µg/m3. As for seasons, winter was the most polluted season, while monsoon was the cleanest. Spatially, the middle and lower IGP showed poorer air quality compared to the upper IGP. In winter, the middle and lower IGP experienced very poor air quality, with mean PM2.5 concentrations of >170 µg/m3.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ásia , Monitoramento Ambiental , Meteorologia , Material Particulado/análise
2.
Epidemiology ; 30(1): 4-10, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199416

RESUMO

BACKGROUND: Traffic-related air pollution has been linked to multiple adverse pregnancy outcomes. However, few studies have examined pregnancy loss, targeting losses identified by hospital records, a large limitation as it does not capture events not reported to the medical system. METHODS: We used a novel variation of the time-series design to determine the association, and identify the critical window of vulnerability, between week-to-week traffic-related air pollution and conceptions resulting in live births, using nitrogen dioxide (NO2) as a traffic emissions tracer. We used information from all live births recorded at Beth Israel Deaconess Medical Center in Boston, MA (2000-2013) and all live births in Tel Aviv District, Israel (2010-2013). RESULTS: In Boston (68,969 live births), the strongest association was during the 15th week of gestation; for every 10 ppb of NO2 increase during that week, we observed a lower rate of live births (rate ratio [RR] = 0.87; 95% confidence interval [CI], 0.78, 0.97), using live birth-identified conceptions to infer pregnancy losses. In the Tel Aviv District (95,053 live births), the strongest estimate was during the 16th gestational week gestation (RR = 0.82; 95% CI, 0.76, 0.90 per 10 ppb of NO2). CONCLUSIONS: Using weekly conceptions ending in live birth rather than identified pregnancy losses, we comprehensively analyzed the relationship between air pollution and all pregnancy loss throughout gestation. The observed results, with remarkable similarity in two independent locations, suggest that higher traffic-related air pollution levels are associated with pregnancy loss, with strongest estimates between the 10th and 20th gestational weeks.


Assuntos
Aborto Espontâneo/epidemiologia , Nascido Vivo/epidemiologia , Poluição Relacionada com o Tráfego , Boston/epidemiologia , Monitoramento Ambiental/métodos , Feminino , Humanos , Israel/epidemiologia , Dióxido de Nitrogênio/análise , Gravidez , Estudos Retrospectivos
3.
Environ Res ; 176: 108560, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31295664

RESUMO

BACKGROUND: Moderate correlations were previously observed between individual estimates of traffic-related air pollution (TRAP) produced by different exposure modeling approaches. This induces exposure misclassification for a substantial fraction of subjects. AIM: We used an ensemble of well-established modeling approaches to increase certainty of exposure classification and reevaluated the association with cancers previously linked to TRAP (lung, breast and prostate), other cancers, and all-cause mortality in a cohort of coronary patients. METHODS: Patients undergoing percutaneous coronary interventions in a major Israeli medical center from 2004 to 2014 (n = 10,627) were followed for cancer (through 2015) and mortality (through 2017) via national registries. Residential exposure to nitrogen oxides (NOx) -a proxy for TRAP- was estimated by optimized dispersion model (ODM) and land use regression (LUR) (rPearson = 0.50). Mutually exclusive groups of subjects classified as exposed by none of the methods (high-certainty low-exposed), ODM alone, LUR alone, or both methods (high-certainty high-exposed) were created. Associations were examined using Cox regression models. RESULTS: During follow-up, 741 incident cancer cases were diagnosed and 3051 deaths occurred. Using a ≥25 ppb cutoff, compared with high-certainty low exposed, the multivariable-adjusted hazard ratios (95% confidence intervals) for lung, breast and prostate cancer were 1.56 (1.13-2.15) in high-certainty exposed, 1.27 (0.86-1.86) in LUR-exposed alone, and 1.13 (0.77-1.65) in ODM-exposed alone. The association of the former category was strengthened using more extreme NOx cutoffs. A similar pattern, albeit less strong, was observed for mortality, whereas no association was shown for cancers not previously linked to TRAP. CONCLUSIONS: Use of an ensemble of TRAP exposure estimates may improve classification, resulting in a stronger association with outcomes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Neoplasias/mortalidade , Emissões de Veículos/análise , Feminino , Humanos , Masculino , Óxidos de Nitrogênio
4.
Am J Epidemiol ; 187(4): 717-725, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020136

RESUMO

Accumulating evidence suggests that perinatal air pollutant exposures are associated with increased risk of autism spectrum disorder (ASD), but evidence for traffic pollutants outside the United States is inconclusive. We assessed the association between nitrogen dioxide, a traffic pollution tracer, and risk of ASD. We conducted a nested case-control study among the entire population of children born during 2005-2009 in the central coastal area of Israel. Cases were identified through the National Insurance Institute of Israel (n = 2,098). Controls were a 20% random sample of the remaining children (n = 54,191). Exposure was based on an optimized dispersion model. We estimated adjusted odds ratios and 95% confidence intervals using logistic regression and a distributed-lag model. In models mutually adjusted for the 2 periods, the odds ratio per 5.85-parts per billion (ppb) increment of nitrogen dioxide exposure during pregnancy (median, 16.8 ppb; range, 7.5-31.2 ppb) was 0.77 (95% confidence interval: 0.59, 1.00), and the odds ratio for exposure during the 9 months after birth was 1.40 (95% confidence interval: 1.09, 1.80). A distributed-lag model revealed reduced risk around week 13 of pregnancy and elevated risk around week 26 after birth. These findings suggest that postnatal exposure to nitrogen dioxide in Israel is associated with increased odds of ASD, and prenatal exposure with lower odds. The latter may relate to selection effects.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Exposição Ambiental/análise , Dióxido de Nitrogênio/análise , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Poluição Relacionada com o Tráfego/análise , Estudos de Casos e Controles , Exposição Ambiental/efeitos adversos , Feminino , Idade Gestacional , Humanos , Israel/epidemiologia , Modelos Logísticos , Masculino , Gravidez , Fatores de Risco , Fatores Socioeconômicos , Poluição Relacionada com o Tráfego/efeitos adversos
5.
Environ Sci Technol ; 52(6): 3520-3526, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29498263

RESUMO

Appreciating the uncertainty margins of exposure assessment to air pollution requires good understanding of its variability throughout the daily activities. This study describes a modeling framework for estimating exposure to air pollutants for a representative sample of working Israeli adults ( N ∼ 168 000) for which both the residence and workplace addresses were available. Individual daily trajectories were simulated by accounting for five generic daily activities: at home, at work, while in commute from home to work and back, and during out-of-home leisure activities. The integrated daily exposure to nitrogen dioxide (NO2) was estimated for each individual by tracking the daily trajectory through an NO2 concentration map, obtained using a dynamic and highly resolved dispersion-like model (temporal resolution, half-hourly; spatial resolution, 500 m). Accounting for the subjects' daily mobility was found to affect their exposure more significantly than accounting solely for the diurnal concentration variability, yet a synergistic effect was noted when accounting for both factors simultaneously. Exposure misclassification varies along the day, with the work microenvironment found to contribute the most to it. In particular, regardless of the high concentrations encountered during the commute, their contribution to the integrated daily exposure is small due to the relatively short time spent in this activity by most people.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Adulto , Exposição Ambiental , Humanos , Dióxido de Nitrogênio
6.
J Environ Sci (China) ; 70: 124-132, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30037399

RESUMO

Polybrominated diphenyl ethers (PBDEs) are commercial flame retardants that have been commonly used in vehicle interior to reduce fire-related hazards. Due to high temperatures and intense insolation that can be attained inside cars parked in the sun, additive PBDEs are prone to leach out and attach to in-vehicle dust, as well as to photo-debrominate. This study examines seasonal variations of concentrations of three common PBDE congeners (BDE-47, BDE-99 and BDE-209) in car dust in Israel. The overall concentrations of these BDEs ranged from 1 to 29µg/g, and were higher in the summer than in the winter (average of 10.2 and 5.3µg/g, respectively). Congener-specific concentrations showed distinct seasonal pattern, representing the interplay between leaching, evaporation and photodebromination. Photolysis of the three congeners, while adsorbed on glass filters and exposed to solar radiation, revealed first order kinetics with debromination rates on the order of 10-2/min. Hence, seasonal variations of the meteorological conditions were found to affect the in-vehicle PBDE concentrations, and are therefore expected also to affect the exposure of passengers to PBDEs.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Poluição do Ar/estatística & dados numéricos , Automóveis/estatística & dados numéricos , Clima , Poeira/análise , Israel , Bifenil Polibromatos , Estações do Ano
7.
Sensors (Basel) ; 17(10)2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28974042

RESUMO

The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

8.
Environ Sci Technol ; 50(15): 8362-7, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27435379

RESUMO

An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.


Assuntos
Higroscópicos , Água , Gases , Modelos Teóricos , Vapor
9.
Atmos Environ (1994) ; 122: 409-416, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28966551

RESUMO

Estimates of exposure to PM2.5 are often derived from geographic characteristics based on land-use regression or from a limited number of fixed ground monitors. Remote sensing advances have integrated these approaches with satellite-based measures of aerosol optical depth (AOD), which is spatially and temporally resolved, allowing greater coverage for PM2.5 estimations. Israel is situated in a complex geo-climatic region with contrasting geographic and weather patterns, including both dark and bright surfaces within a relatively small area. Our goal was to examine the use of MODIS-based MAIAC data in Israel, and to explore the reliability of predicted PM2.5 and PM10 at a high spatiotemporal resolution. We applied a three stage process, including a daily calibration method based on a mixed effects model, to predict ground PM2.5 and PM10 over Israel. We later constructed daily predictions across Israel for 2003-2013 using spatial and temporal smoothing, to estimate AOD when satellite data were missing. Good model performance was achieved, with out-of-sample cross validation R2 values of 0.79 and 0.72 for PM10 and PM2.5, respectively. Model predictions had little bias, with cross-validated slopes (predicted vs. observed) of 0.99 for both the PM2.5 and PM10 models. To our knowledge, this is the first study that utilizes high resolution 1km MAIAC AOD retrievals for PM prediction while accounting for geo-climate complexities, such as experienced in Israel. This novel model allowed the reconstruction of long- and short-term spatially resolved exposure to PM2.5 and PM10 in Israel, which could be used in the future for epidemiological studies.

10.
Environ Sci Technol ; 48(3): 1787-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404989

RESUMO

Retrieval of aerosol loading in vertical atmospheric columns is a common product of satellite and ground instruments that measure spectral extinction of solar radiation throughout the entire atmosphere. Here we study ground hyperspectral imaging of artificial light sources as a complementary method for retrieving fine aerosol concentrations along quazi-horizontal ambient open paths. Previously, we reported hyperspectral measurements of the aerosol optical thickness in the 500-900 nm range over urban-scale distances (180 m to 4 km), measuring the extinction of radiation emitted from a halogen source. Here we confirm in a laboratory-setup the basic premise that different accumulation-size aerosols generate distinct hyperspectral signatures in this spectral range. Measured hyperspectral attenuation signatures of fine aerosols were comparable to calculated Mie scattering signatures, suggesting that modal aerosol concentrations can be retrieved. A genetic algorithm was adapted to estimate the aerosol modal concentrations from its hyperspectral extinction signature. Retrievals of aerosol concentrations from measured and synthetic hyperspectral signatures indicated a robust algorithm, with an expected retrieval error of 0.2-22% for typical ambient concentrations along an urban-scale open path. The retrieval accuracy was found to depend on the relative aerosol modal concentrations, especially when there is a substantial overlap between the modal spectral signatures.


Assuntos
Aerossóis/análise , Material Particulado/análise , Tecnologia de Sensoriamento Remoto , Atmosfera/análise , Cidades , Monitoramento Ambiental/métodos , Luz
11.
Sci Total Environ ; 940: 173749, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38844234

RESUMO

Fine particulate matter (PM2.5) is a complex mixture of aerosol particles with varying properties and sources, both local and distant. In areas lacking detailed monitoring of PM2.5 speciation, the common source-apportionment analyses are not applicable. This study demonstrates an alternative framework for estimating sources and processes that affect observed PM2.5 concentrations when information on the particle composition is unavailable. Eight years (2012-2019) of half-hourly PM2.5 observations from 10 air quality monitoring (AQM) stations, clustered according to their airmass transport sector were analyzed, using Non-negative Matrix Factorization (NMF). Factors were determined based on their variation in time, space, and between airmass sectors. Employing a supervised machine-learning model provided insights into the relationships between the extracted factors, meteorological parameters and co-measured airborne pollutants. Factor interpretations were evaluated through comparisons with measurements of PM2.5 species from a nearby Surface PARTiculate mAtter Network (SPARTAN) station. The NMF successfully separated background factors from an urban anthropogenic-activity factor, with the latter accounting for approximately 60 % of the observed PM2.5 levels in Tel Aviv (∼10±6µg/m3). Positive monotonic relationships were observed between the PM2.5 urban anthropogenic-activity factor and measurements of nitrogen oxides (NOx) and absolute humidity (AH), representing the impact of traffic emissions and hygroscopic growth, respectively. The summer background factor was found to represent long-range transport (LRT) from Europe, showing a good agreement (R2 = 0.81) with ammonium sulphate concentrations. Our results demonstrate that a spatial NMF analysis can reliably estimate contributions of different sources with distinct compositions and properties to the total observed PM2.5. Using such an analysis, future environmental health studies could assess health risks associated with exposure to distinct PM2.5 fractions. This information may assist decision makers to set environmental targets for abating PM2.5 with specific compositions and properties.

12.
Sci Total Environ ; 940: 173715, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38852869

RESUMO

Vehicle-emitted fine particulate matter (PM2.5) has been associated with significant health outcomes and environmental risks. This study estimates the contribution of traffic-related exhaust emissions (TREE) to observed PM2.5 using a novel factorization framework. Specifically, co-measured nitrogen oxides (NOx) concentrations served as a marker of vehicle-tailpipe emissions and were integrated into the optimization of a Non-negative Matrix Factorization (NMF) analysis to guide the factor extraction. The novel TREE-NMF approach was applied to long-term (2012-2019) PM2.5 observations from air quality monitoring (AQM) stations in two urban areas. The extracted TREE factor was evaluated against co-measured black carbon (BC) and PM2.5 species to which the TREE-NMF optimization was blind. The contribution of the TREE factor to the observed PM2.5 concentrations at an AQM station from the first location showed close agreement (R2=0.79) with monitored BC data. In the second location, a comparison of the extracted TREE factor with measurements at a nearby Surface PARTiculate mAtter Network (SPARTAN) station revealed moderate correlations with PM2.5 species commonly associated with fuel combustion, and a good linear regression fit with measured equivalent BC concentrations. The estimated concentrations of the TREE factor at the second location accounted for 7-11 % of the observed PM2.5 in the AQM stations. Moreover, analysis of specific days known to be characterized by little traffic emissions suggested that approximately 60-78 % of the traffic-related PM2.5 concentrations could be attributed to particulate traffic-exhaust emissions. The methodology applied in this study holds great potential in areas with limited monitoring of PM2.5 speciation, in particular BC, and its results could be valuable for both future environmental health research, regional radiative forcing estimates, and promulgation of tailored regulations for traffic-related air pollution abatement.

13.
Environ Pollut ; 345: 123526, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355085

RESUMO

Understanding the role of meteorology in determining air pollutant concentrations is an important goal for better comprehension of air pollution dispersion and fate. It requires estimating the strength of the causal associations between all the relevant meteorological variables and the pollutant concentrations. Unfortunately, many of the meteorological variables are not routinely observed. Furthermore, the common analysis methods cannot establish causality. Here we use the output of a numerical weather prediction model as a proxy for real meteorological data, and study the causal relationships between a large suite of its meteorological variables, including some rarely observed ones, and the corresponding nitrogen dioxide (NO2) concentrations at multiple observation locations. Time-lagged convergent cross mapping analysis is used to ascertain causality and its strength, and the Pearson and Spearman correlations are used to study the direction of the associations. The solar radiation, temperature lapse rate, boundary layer height, horizontal wind speed and wind shear were found to be causally associated with the NO2 concentrations, with mean time lags of their maximal impact at -3, -1, -2 and -3 hours, respectively. The nature of the association with the vertical wind speed was found to be uncertain and region-dependent. No causal association was found with relative humidity, temperature and precipitation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Meteorologia , Tempo (Meteorologia) , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , China , Conceitos Meteorológicos
14.
Prev Med ; 57(4): 339-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777671

RESUMO

INTRODUCTION: Chronic environmental exposure to particulate matter <2.5µm in diameter (PM2.5) has been associated with cardiovascular disease; however, the effect of air pollution on myocardial infarction (MI) survivors is not clear. We studied the association of chronic exposure to PM2.5 with death and recurrent cardiovascular events in MI survivors. METHODS: Consecutive patients aged ≤65years admitted to all medical centers in central Israel after first-MI in 1992-1993 were followed through 2005 for cardiovascular events and 2011 for survival. Data on sociodemographic and prognostic factors were collected at baseline and during follow-up. Residential exposure to PM2.5 was estimated for each patient based on data recorded at air quality monitoring stations. Cox and Andersen-Gill proportional hazards models were used to study the pollution-outcome association. RESULTS: Among the 1120 patients, 469 (41.9%) died and 541 (48.3%) experienced one or more recurrent cardiovascular event. The adjusted hazard ratios associated with a 10µg/m(3) increase in PM2.5 exposure were 1.3 (95% CI 0.8-2.1) for death and 1.5 (95% CI 1.1-1.9) for multiple recurrences of cardiovascular events (MI, heart failure and stroke). CONCLUSION: When adjustment for socio-demographic factors is performed, cumulative chronic exposure to PM2.5 is positively associated with recurrence of cardiovascular events in patients after a first MI.


Assuntos
Exposição Ambiental/efeitos adversos , Infarto do Miocárdio/epidemiologia , Material Particulado/efeitos adversos , Idoso , Diabetes Mellitus/epidemiologia , Feminino , Humanos , Israel/epidemiologia , Masculino , Atividade Motora , Infarto do Miocárdio/etiologia , Fatores de Risco , Fumar/efeitos adversos , Fatores Socioeconômicos
15.
Environ Pollut ; 320: 121119, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681376

RESUMO

Fine airborne particles (diameter <2.5 µm; PM2.5) are recognized as a major threat to human health due to their physicochemical properties: composition, size, shape, etc. However, normally only size-fraction-specific particle concentrations are monitored. Interestingly, although the aerosol type is reported as part of the aerosol optical depth retrieval from satellite observations, it has not been utilized, to date, as an auxiliary information/co-variate for PM2.5 prediction. We developed Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) models that account for this information when predicting surface PM2.5. The models take as input only widely available data: satellite aerosol products with full cover and surface meteorological data. Distinct models were developed for AOD of specific aerosol types. Both the RF and XGBoost models performed well, showing moderate-to-high cross-validated adjusted R2 (RF: 0.753-0.909; XGBoost: 0.741-0.903), depending on the aerosol type and other covariates. The weighted performance of the specific aerosol-type models was higher than of the RF and XGBoost baseline models, where all the AOD retrievals were used together (the common practice). Our approach can provide improved risk estimates due to exposure to PM2.5, better resolved radiative forcing calculations, and tailored abatement surveillance of specific pollutants/sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , Monitoramento Ambiental , Aerossóis/análise
16.
Environ Pollut ; 271: 116334, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388684

RESUMO

Land use regression modeling is a common method for assessing exposure to ambient pollutants, yet it suffers from very coarse temporal resolution. Wireless distributed sensor networks (WDSN) is a promising technology that can provide extremely high spatiotemporal pollutant patterns but is known to suffer from several limitations that put into question its data reliability. This study examines the advantages of fusing data from these two methods and obtaining high spatiotemporally-resolved product that can be used for exposure assessment. We demonstrate this approach by estimating nitrogen dioxide (NO2) concentrations at a sub-urban scale, with the study area limited by the deployment of the WDSN nodes. Specifically, hourly-resolved fused-data estimates were obtained by combining a stationary traffic-based land use regression (LUR) model with observations (15 min sampling frequency) made by an array of low-cost sensor nodes, with the sensors' readings mapped over the whole study area. Data fusion was performed by merging the two independent information products using a fuzzy logic approach. The performance of the fused product was examined against reference hourly observations at four air quality monitoring (AQM) stations situated within the study area, with the AQM data not used for the development of any of the underlying information layers. The mean hourly RMSE between the fused data product and the AQM records was 9.3 ppb, smaller than the RMSE of the two base products independently (LUR: 14.87 ppb, WDSN: 10.45 ppb). The normalized Moran's I of the fused product indicates that the data-fusion product reveals more realistic spatial patterns than those of the base products. The fused NO2 concentration product shows considerable spatial variability relative to that evident by interpolation of both the WDSN records and the AQM stations data, with significant non-random patterns in 74% of the study period.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Modelos Teóricos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Reprodutibilidade dos Testes
17.
BMC Public Health ; 10: 369, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20576121

RESUMO

BACKGROUND: Cardiovascular disease is a leading cause of morbidity and mortality worldwide and epidemiological studies have consistently shown an increased risk for cardiovascular events in relation to exposure to air pollution. The Israel Study of First Acute Myocardial Infarction was designed to longitudinally assess clinical outcomes, psychosocial adjustment and quality of life in patients hospitalized with myocardial infarction. The current study, by introducing retrospective air pollution data, will examine the association between exposure to air pollution and outcome in myocardial infarction survivors. This report will describe the methods implemented and measures employed. The study specifically aims to examine the relationship between residential exposure to air pollution and long-term risk of recurrent coronary event, heart failure, stroke, cardiac and all-cause death in a geographically defined cohort of patients with myocardial infarction. METHODS/DESIGN: All 1521 patients aged < or =65 years, admitted with first myocardial infarction between February 1992 and February 1993 to the 8 hospitals serving the population of central Israel, were followed for a median of 13 years. Data were collected on sociodemographic, clinical and environmental factors. Data from air quality monitoring stations will be incorporated retrospectively. Daily measures of air pollution will be summarised, allowing detailed maps to be developed in order to reflect chronic exposure for each participant. DISCUSSION: This study addresses some of the gaps in understanding of the prognostic importance of air pollution exposure after myocardial infarction, by allowing a sufficient follow-up period, using a well-defined community cohort, adequately controlling for multiple and multilevel confounding factors and providing extensive data on various outcomes.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/análise , Infarto do Miocárdio , Poluição do Ar/análise , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Feminino , Humanos , Israel/epidemiologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/mortalidade , Recidiva , Fatores Socioeconômicos , Sobreviventes
18.
Sci Total Environ ; 733: 139300, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446070

RESUMO

Air pollution in the urban environment is a major concern. The ambient concentrations depend on the levels of transboundary imported pollution, the intensity of local sources and the prevailing atmospheric conditions. This work studies the relative impact of two atmospheric variables-atmospheric stability and regional scale turbulence-in determining the air pollution concentrations. We considered a setting (downtown Haifa, Israel) impacted by a large variety of sources, emitting pollutants with different chemical attributes and atmospheric life times. We found that traffic accounts for most of the locally produced pollution in the study location. However, the meteorological factors can overwhelm its impact and dictate the concentrations. The switch from stable to convective conditions and the more vigorous daytime wind are associated with a premature end of the morning peak concentrations that result from rush hour emissions of NOx, Black Carbon (BC) and ultra-fine particles. It results in daytime concentration which are lower than (winter) or equal to (summer) those at night, in spite of the much lower night-time traffic volumes. Similar, albeit weaker, impact was detected in the benzene and toluene concentrations. Sources outside the study area are responsible for most of the CO, PM1 and PM2.5 concentrations but during winter nights, characterised by strong atmospheric stability and low turbulence, their concentrations are elevated due to the local emissions. We developed a diagnostic statistical nonlinear model for the pollutant concentrations, which points to a stronger association of the atmospheric stability with the concentrations during stable conditions but turbulence dominating during convective conditions. Our findings explain the relatively low overall concentrations of locally emitted pollutants in the study area but warn of the potential for high concentrations during night-time in locations with comparable meteorological conditions.

19.
Environ Pollut ; 257: 113377, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31672363

RESUMO

Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ±â€¯0.65 km) and wheat (AM: 2.34 ±â€¯1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Fumaça/análise , Ásia , Clima , Carvão Mineral , Poeira/análise , Estações do Ano
20.
Eur J Prev Cardiol ; : 2047487320921987, 2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32389024

RESUMO

BACKGROUND: Individuals with coronary heart disease are considered susceptible to traffic-related air pollution exposure. Yet, cohort-based evidence on whether preexisting coronary heart disease modifies the association of traffic-related air pollution with health outcomes is lacking. AIM: Using data of four Israeli cohorts, we compared associations of traffic-related air pollution with mortality and cancer between coronary heart disease patients and matched controls from the general population. METHODS: Subjects hospitalized with acute coronary syndrome from two patient cohorts (inception years: 1992-1993 and 2006-2014) were age- and sex-matched to coronary heart disease-free participants of two cycles of the Israeli National Health and Nutrition Surveys (inception years: 1999-2001 and 2005-2006). Ambient concentrations of nitrogen oxides at the residential place served as a proxy for traffic-related air pollution exposure across all cohorts, based on a high-resolution national land use regression model (50 m). Data on all-cause mortality (last update: 2018) and cancer incidence (last update: 2016) were retrieved from national registries. Cox-derived stratum-specific hazard ratios with 95% confidence intervals were calculated, adjusted for harmonized covariates across cohorts, including age, sex, ethnicity, neighborhood socioeconomic status, smoking, diabetes, hypertension, prior stroke and prior malignancy (the latter only in the mortality analysis). Effect-modification was examined by testing nitrogen oxides-by-coronary heart disease interaction term in the entire matched cohort. RESULTS: The cohort (mean (standard deviation) age 61.5 (14) years; 44% women) included 2393 matched pairs, among them 2040 were cancer-free at baseline. During a median (25th-75th percentiles) follow-up of 13 (10-19) and 11 (7-17) years, 1458 deaths and 536 new cancer cases were identified, respectively. In multivariable-adjusted models, a 10-parts per billion nitrogen oxides increment was positively associated with all-cause mortality among coronary heart disease patients (hazard ratio = 1.13, 95% confidence interval 1.05-1.22), but not among controls (hazard ratio = 1.00, 0.93-1.08) (pinteraction = 0.003). A similar pattern was seen for all-cancer incidence (hazard ratioCHD = 1.19 (1.03-1.37), hazard ratioCHD-Free = 0.93 (0.84-1.04) (pinteraction = 0.01)). Associations were robust to multiple sensitivity analyses. CONCLUSIONS: Coronary heart disease patients might be at increased risk for traffic-related air pollution-associated mortality and cancer, irrespective of their age and sex. Patients and clinicians should be more aware of the adverse health effects on coronary heart disease patients of chronic exposure to vehicle emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA