Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002796

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Assuntos
Mutação com Ganho de Função/genética , Obesidade/patologia , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais , Adulto , Idoso , Índice de Massa Corporal , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , AMP Cíclico/metabolismo , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , beta-Arrestinas/metabolismo
2.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198511

RESUMO

The insulin receptor (IR) is critically involved in maintaining glucose homeostasis. It undergoes proteolytic cleavage by proprotein convertases, which is an essential step for its activation. The importance of the insulin receptor in liver is well established, but its role in pancreatic ß cells is still controversial. In this study, we investigated the cleavage of the IR by the proprotein convertase FURIN in ß cells and hepatocytes, and the contribution of the IR in pancreatic ß cells and liver to glucose homeostasis. ß-cell-specific Furin knockout (ßFurKO) mice were glucose intolerant, but liver-specific Furin knockout (LFurKO) mice were normoglycemic. Processing of the IR was blocked in ßFurKO cells, but unaffected in LFurKO mice. Most strikingly, glucose homeostasis in ß-cell-specific IR knockout (ßIRKO) mice was normal in younger mice (up to 20 weeks), and only mildly affected in older mice (24 weeks). In conclusion, FURIN cleaves the IR non-redundantly in ß cells, but redundantly in liver. Furthermore, we demonstrated that the IR in ß cells plays a limited role in glucose homeostasis.


Assuntos
Furina/deficiência , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Furina/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Homeostase , Camundongos Knockout , Proteólise , Receptor de Insulina/deficiência , Transdução de Sinais
3.
J Biol Chem ; 288(38): 27200-27207, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23940028

RESUMO

Streptozotocin (STZ) is widely used as diabetogenic agent in animal models for diabetic nephropathy (DN). However, it is also directly cytotoxic to kidneys, making it difficult to distinguish between DN-related and STZ-induced nephropathy. Therefore, an improved protocol to generate mice for DN studies, with a quick and robust achievement of the diabetic state, without direct kidney toxicity is required. To investigate the mechanism leading to STZ-induced nephropathy, kidney damage was induced with a high dose of STZ. This resulted in delayed gastric emptying, at least partially caused by impaired desacyl ghrelin clearance. STZ uptake in the kidneys is to a large extent mediated by the sodium/glucose cotransporters (Sglts) because the Sglt inhibitor phlorizin could reduce STZ uptake in the kidneys. Consequently, the direct toxic effects in the kidney and the gastric dilatation were resolved without interfering with the ß-cell toxicity. Furthermore, pancreatic STZ uptake was increased, hereby decreasing the threshold for ß-cell toxicity, allowing for single low non-nephrotoxic STZ doses (70 mg/kg). In conclusion, this study provides novel insights into the mechanism of STZ toxicity in kidneys and suggests a more efficient regime to induce DN with little or no toxic side effects.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Células Secretoras de Insulina/metabolismo , Rim/metabolismo , Florizina/farmacologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Células Secretoras de Insulina/patologia , Rim/lesões , Rim/patologia , Masculino , Camundongos , Transportador 1 de Glucose-Sódio/metabolismo , Estreptozocina/efeitos adversos , Estreptozocina/farmacocinética , Estreptozocina/farmacologia
4.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941473

RESUMO

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Assuntos
Doença de Alzheimer , Memória , Camundongos Transgênicos , Plasticidade Neuronal , Receptor 5-HT2C de Serotonina , Animais , Humanos , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Serotonina/metabolismo , Modelos Animais de Doenças , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
5.
Mol Metab ; 66: 101627, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374777

RESUMO

OBJECTIVE: The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons controlling glucose and feeding. METHODS: POMC-Cre+/- mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T and CHO cell lines lacking FURIN. RESULTS: In control mice, Furin mRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of α-MSH/POMC was decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines lacking a regulated secretory pathway. CONCLUSIONS: These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under obesogenic conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Comportamento Alimentar , Furina , Hipotálamo , Pró-Opiomelanocortina , Animais , Humanos , Camundongos , alfa-MSH/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Comportamento Alimentar/fisiologia , Furina/genética , Furina/metabolismo , Glucose , Células HEK293 , Hipotálamo/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/genética , Pró-Proteína Convertase 2/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , RNA Mensageiro/metabolismo , Subtilisinas/genética , Subtilisinas/metabolismo
6.
Nat Med ; 28(12): 2537-2546, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536256

RESUMO

Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.


Assuntos
Obesidade Mórbida , Receptor 5-HT2C de Serotonina , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Células HEK293 , Obesidade/genética , Receptor 5-HT2C de Serotonina/genética , Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Adaptação Psicológica
7.
Diabetes ; 70(2): 492-503, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277337

RESUMO

FURIN is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, but its specific role in pancreatic ß-cells is largely unknown. The aim of this study was to determine the role of FURIN in glucose homeostasis. We show that FURIN is highly expressed in human islets, whereas PCs that potentially could provide redundancy are expressed at considerably lower levels. ß-cell-specific Furin knockout (ßFurKO) mice are glucose intolerant as a result of smaller islets with lower insulin content and abnormal dense-core secretory granule morphology. mRNA expression analysis and differential proteomics on ßFurKO islets revealed activation of activating transcription factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). ßFurKO cells show impaired cleavage or shedding of vacuolar-type ATPase (V-ATPase) subunits Ac45 and prorenin receptor, respectively, and impaired lysosomal acidification. Blocking V-ATPase pharmacologically in ß-cells increased mTORC1 activity, suggesting involvement of the V-ATPase proton pump in the phenotype. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation and impaired lysosomal acidification in ß-cells lacking Furin, causing ß-cell dysfunction.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Furina/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Furina/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
8.
Cell Rep ; 34(12): 108862, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761344

RESUMO

The Melanocortin-4 Receptor (MC4R) plays a pivotal role in energy homeostasis. We used human MC4R mutations associated with an increased or decreased risk of obesity to dissect mechanisms that regulate MC4R function. Most obesity-associated mutations impair trafficking to the plasma membrane (PM), whereas obesity-protecting mutations either accelerate recycling to the PM or decrease internalization, resulting in enhanced signaling. MC4R mutations that do not affect canonical Gαs protein-mediated signaling, previously considered to be non-pathogenic, nonetheless disrupt agonist-induced internalization, ß-arrestin recruitment, and/or coupling to Gαs, establishing their causal role in severe obesity. Structural mapping reveals ligand-accessible sites by which MC4R couples to effectors and residues involved in the homodimerization of MC4R, which is disrupted by multiple obesity-associated mutations. Human genetic studies reveal that endocytosis, intracellular trafficking, and homodimerization regulate MC4R function to a level that is physiologically relevant, supporting the development of chaperones, agonists, and allosteric modulators of MC4R for weight loss therapy.


Assuntos
Peso Corporal/genética , Endocitose , Variação Genética , Multimerização Proteica , Receptor Tipo 4 de Melanocortina/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Receptor Tipo 4 de Melanocortina/química , Transdução de Sinais , beta-Arrestinas/metabolismo
9.
Sci Rep ; 10(1): 9028, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493978

RESUMO

Brain-derived neurotrophic factor (BDNF) signals through its high affinity receptor Tropomyosin receptor kinase-B (TrkB) to regulate neuronal development, synapse formation and plasticity. In rodents, genetic disruption of Bdnf and TrkB leads to weight gain and a spectrum of neurobehavioural phenotypes. Here, we functionally characterised a de novo missense variant in BDNF and seven rare variants in TrkB identified in a large cohort of people with severe, childhood-onset obesity. In cells, the E183K BDNF variant resulted in impaired processing and secretion of the mature peptide. Multiple variants in the kinase domain and one variant in the extracellular domain of TrkB led to a loss of function through multiple signalling pathways, impaired neurite outgrowth and dominantly inhibited glutamatergic synaptogenesis in hippocampal neurons. BDNF/TrkB variant carriers exhibited learning difficulties, impaired memory, hyperactivity, stereotyped and sometimes, maladaptive behaviours. In conclusion, human loss of function BDNF/TrkB variants that impair hippocampal synaptogenesis may contribute to a spectrum of neurobehavioural disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurogênese/efeitos dos fármacos , Receptor trkB/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Masculino , Neurogênese/fisiologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Proteínas Quinases , Transdução de Sinais/efeitos dos fármacos
11.
Trends Endocrinol Metab ; 29(10): 670-674, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29921469

RESUMO

The minigene encoding human growth hormone (hGH) has been incorporated into over 300 transgenic mouse lines to improve transgene expression. However, unexpected and functional hGH expression can drastically alter physiology. We list here the mouse lines in which ectopic hGH has been confirmed, and we provide a wiki for lines awaiting analysis.


Assuntos
Artefatos , Hormônio do Crescimento Humano/genética , Transgenes/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos
12.
Mol Metab ; 17: 82-97, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201275

RESUMO

OBJECTIVE: The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. METHODS: We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from human pluripotent stem cells (hPSCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the sequence and quantify the production of hypothalamic neuropeptides, including those derived from POMC. RESULTS: In both in vitro and in vivo hypothalamic cells, LC-MS/MS revealed the sequence of hundreds of neuropeptides as a resource for the field. Although the existence of ß-melanocyte stimulating hormone (MSH) is controversial, we found that both this peptide and desacetyl α-MSH (d-α-MSH) were produced in considerable excess of acetylated α-MSH. In hPSC-derived hypothalamic neurons, these POMC derivatives were appropriately trafficked, secreted, and their production was significantly (P < 0.0001) increased in response to the hormone leptin. CONCLUSIONS: Our findings challenge the assumed pre-eminence of α-MSH and suggest that in humans, d-α-MSH and ß-MSH are likely to be the predominant physiological products acting on melanocortin receptors.


Assuntos
Melanocortinas/metabolismo , alfa-MSH/metabolismo , beta-MSH/metabolismo , Cromatografia Líquida , Feminino , Homeostase/fisiologia , Humanos , Hipotálamo , Leptina/metabolismo , Masculino , Espectrometria de Massas/métodos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Espectrometria de Massas em Tandem
13.
Eur J Cell Biol ; 96(5): 432-439, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28413120

RESUMO

Proprotein Convertase 7 (PC7) is a Furin-like endoprotease that cleaves precursor proteins at basic amino acids. PC7 is concentrated in the trans-Golgi network (TGN) but it shuttles between the plasma membrane and the TGN depending on sequences in the cytoplasmic tail. A short region containing a three amino acids motif, P724-L725-C726, is essential and sufficient for internalization of PC7 but not for TGN localization, which requires the additional presence of the juxtamembrane region. In this study we have investigated the contribution of a cluster of basic amino acids and two reversibly palmitoylated cysteine residues to endocytic trafficking. Stable cell lines overexpressing chimeric proteins (CD25 and CD46) containing the cytoplasmic domain of PC7 in which the basic cluster alone or together with both palmitoylated cysteines are mutated showed enhanced surface expression as demonstrated by immunofluorescence experiments and surface biotinylation. The mutant proteins no longer recycled to the TGN in antibody uptake experiments and accumulated in an endosomal compartment. Recycling of wild type PC7 to the TGN is blocked by nocodazole, suggesting that PC7 shuttles to the TGN via late endosomes, similar to Furin. Unlike furin, however, PC7 was found to recycle to a region within the TGN, which is deficient in sialyltransferase, as shown by resialylation experiments. In conclusion, a novel motif, composed of a basic amino acid cluster and two palmitoylated cysteines are essential for TGN localization and endocytic trafficking.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Subtilisinas/metabolismo , Rede trans-Golgi/metabolismo , Aminoácidos Básicos/metabolismo , Animais , Células Cultivadas , Cisteína/metabolismo , Lipoilação , Transporte Proteico/fisiologia , Ratos
14.
PLoS One ; 10(8): e0135502, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275221

RESUMO

The Nestin-Cre driver mouse line has mild hypopituitarism, reduced body weight, a metabolic phenotype and reduced anxiety. Although several causes have been suggested, a comprehensive explanation is still lacking. In this study we examined the molecular mechanisms leading to this compound phenotype. Upon generation of the Nestin-Cre mice, the human growth hormone (hGH) minigene was inserted downstream of the Cre recombinase to ensure efficient transgene expression. As a result, hGH is expressed in the hypothalamus. This results in the auto/paracrine activation of the GH receptor as demonstrated by the increased phosphorylation of signal transducer and activator of transcription 5 (STAT5) and reduced expression of growth hormone releasing hormone (Ghrh). Low Ghrh levels cause hypopituitarism consistent with the observed mouse growth hormone (mGH) deficiency. mGH deficiency caused reduced activation of the GH receptor and hence reduced phosphorylation of STAT5 in the liver. This led to decreased levels of hepatic Igf-1 mRNA and consequently postnatal growth retardation. Furthermore, genes involved in lipid uptake and synthesis, such as CD36 and very low-density lipoprotein receptor were upregulated, resulting in liver steatosis. In conclusion, this study demonstrates the unexpected expression of hGH in the hypothalamus of Nestin-Cre mice which is able to activate both the GH receptor and the prolactin receptor. Increased hypothalamic GH receptor signaling explains the observed hypopituitarism, reduced growth and metabolic phenotype of Nestin-Cre mice. Activation of either receptor is consistent with reduced anxiety.


Assuntos
Hormônio do Crescimento Humano/metabolismo , Hipotálamo/metabolismo , Animais , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Integrases/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Nestina/metabolismo , RNA Mensageiro/genética , Receptores de LDL/metabolismo , Fator de Transcrição STAT5/metabolismo
15.
Biomed Res Int ; 2015: 148651, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167473

RESUMO

Proprotein convertases are subtilisin-like serine endoproteases that cleave and hence activate a variety of proproteins, including growth factors, receptors, metalloproteases, and extracellular matrix proteins. Therefore, it has been suggested that inhibition of the ubiquitously expressed proprotein convertase FURIN might be a good therapeutic strategy for several tumor types. Whether this is also the case for hepatocellular carcinoma (HCC) is currently not clear. In a mouse model for HCC expression of Furin was not altered in the tumors, while those of PC7, PC5/6, and PACE4 significantly decreased, at least at some time points. To investigate the impact of Furin inhibition on the development and progression of HCC in this model, Furin was genetically ablated in the liver. Furin inactivation resulted in an increased tumor mass after 5 weeks. This was not caused by decreased apoptosis, since no differences in the apoptosis index could be observed. However, it could at least partially be explained by increased hepatocyte proliferation at 5 weeks. The tumors of the Furin knockout mice were histologically similar to those in wild type mice. In conclusion, liver-specific Furin inhibition in HCC enhances the tumor formation and will not be a good therapeutic strategy for this tumor type.


Assuntos
Furina/antagonistas & inibidores , Furina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Animais , Apoptose/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Feminino , Furina/genética , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Cell Metab ; 20(6): 979-90, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25470546

RESUMO

The human growth hormone (hGH) minigene is frequently used in the derivation of transgenic mouse lines to enhance transgene expression. Although this minigene is present in the transgenes as a secondcistron, and thus not thought to be expressed, we found that three commonly used lines, Pdx1-Cre(Late), RIP-Cre, and MIP-GFP, each expressed significant amounts of hGH in pancreatic islets. Locally secreted hGH binds to prolactin receptors on ß cells, activates STAT5 signaling, and induces pregnancy-like changes in gene expression, thereby augmenting pancreatic ß cell mass and insulin content. In addition, islets of Pdx1-Cre(Late) mice have lower GLUT2 expression and reduced glucose-induced insulin release and are protected against the ß cell toxin streptozotocin. These findings may be important when interpreting results obtained when these and other hGH minigene-containing transgenic mice are used.


Assuntos
Hormônio do Crescimento Humano/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Animais , Feminino , Hormônio do Crescimento Humano/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA