Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 163(3): 537-9, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496597

RESUMO

Bacterial type VI secretion is an offensive and defensive weapon that utilizes a molecular warhead to inject toxins into neighboring cells. In this issue of Cell, Whitney et al. report a new class of toxin that disrupts the core metabolism of recipient cells and uncover a surprising requirement for EF-Tu.


Assuntos
Toxinas Bacterianas/metabolismo , NAD+ Nucleosidase/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/química
2.
Cell ; 156(1-2): 183-94, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24361104

RESUMO

The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.


Assuntos
Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Escherichia coli/citologia , Fenômenos Biofísicos , Caulobacter crescentus/química , Cromossomos Bacterianos/metabolismo , Citoplasma/química , Escherichia coli/química , Escherichia coli/metabolismo , Plasmídeos/metabolismo
3.
J Bacteriol ; 205(5): e0045322, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37074168

RESUMO

The bacterial nitrogen-related phosphotransfer (PTSNtr; here, Nitro-PTS) system bears homology to well-known PTS systems that facilitate saccharide import and phosphorylation. The Nitro-PTS comprises an enzyme I (EI), PtsP; an intermediate phosphate carrier, PtsO; and a terminal acceptor, PtsN, which is thought to exert regulatory effects that depend on its phosphostate. For instance, biofilm formation by Pseudomonas aeruginosa can be impacted by the Nitro-PTS, as deletion of either ptsP or ptsO suppresses Pel exopolysaccharide production and additional deletion of ptsN elevates Pel production. However, the phosphorylation state of PtsN in the presence and absence of its upstream phosphotransferases has not been directly assessed, and other targets of PtsN have not been well defined in P. aeruginosa. We show that PtsN phosphorylation via PtsP requires the GAF domain of PtsP and that PtsN is phosphorylated on histidine 68, as in Pseudomonas putida. We also find that FruB, the fructose EI, can substitute for PtsP in PtsN phosphorylation but only in the absence of PtsO, implicating PtsO as a specificity factor. Unphosphorylatable PtsN had a minimal effect on biofilm formation, suggesting that it is necessary but not sufficient for the reduction of Pel in a ptsP deletion. Finally, we use transcriptomics to show that the phosphostate and the presence of PtsN do not appear to alter the transcription of biofilm-related genes but do influence genes involved in type III secretion, potassium transport, and pyoverdine biosynthesis. Thus, the Nitro-PTS influences several P. aeruginosa behaviors, including the production of its signature virulence factors. IMPORTANCE The PtsN protein impacts the physiology of a number of bacterial species, and its control over downstream targets can be altered by its phosphorylation state. Neither its upstream phosphotransferases nor its downstream targets are well understood in Pseudomonas aeruginosa. Here, we examine PtsN phosphorylation and find that the immediate upstream phosphotransferase acts as a gatekeeper, allowing phosphorylation by only one of two potential upstream proteins. We use transcriptomics to discover that PtsN regulates the expression of gene families that are implicated in virulence. One emerging pattern is a repression hierarchy by different forms of PtsN: its phosphorylated state is more repressive than its unphosphorylated state, but the expression of its targets is even higher in its complete absence.


Assuntos
Proteínas de Bactérias , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulência , Fosforilação , Fosfotransferases/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
J Bacteriol ; 204(12): e0028422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321838

RESUMO

Tricarboxylates such as citrate are the preferred carbon sources for Pseudomonas aeruginosa, an opportunistic pathogen that causes chronic human infections. However, the membrane transport process for the tricarboxylic acid cycle intermediates citrate and cis-aconitate is poorly characterized. Transport is thought to be controlled by the TctDE two-component system, which mediates transcription of the putative major transporter OpdH. Here, we search for previously unidentified transporters of citrate and cis-aconitate using both protein homology and RNA sequencing approaches. We uncover new transporters and show that OpdH is not the major citrate importer; instead, citrate transport primarily relies on the tripartite TctCBA system, which is encoded in the opdH operon. Deletion of tctA causes a growth lag on citrate and loss of growth on cis-aconitate. Combinatorial deletion of newly discovered transporters can fully block citrate utilization. We then characterize transcriptional control of the opdH operon in tctDE mutants and show that loss of tctD blocks citrate utilization due to an inability to express opdH-tctCBA. However, tctE and tctDE mutants evolve heritable adaptations that restore growth on citrate as the sole carbon source. IMPORTANCE Pseudomonas aeruginosa is a bacterium that infects hospitalized patients and is often highly resistant to antibiotic treatment. It preferentially uses small organic acids called tricarboxylates rather than sugars as a source of carbon for growth. The transport of many of these molecules from outside the cell to the interior occurs through unknown channels. Here, we examined how the tricarboxylates citrate and cis-aconitate are transported in P. aeruginosa. We then sought to understand how production of proteins that permit citrate and cis-aconitate transport is regulated by a signaling system called TctDE. We identified new transporters for these molecules, clarified the function of a known transport system, and directly tied transporter expression to the presence of an intact TctDE system.


Assuntos
Ácido Cítrico , Pseudomonas aeruginosa , Ácido Aconítico/metabolismo , Carbono/metabolismo , Citratos/metabolismo , Ácido Cítrico/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Tricarboxílicos/metabolismo
5.
EMBO J ; 36(19): 2856-2869, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28838935

RESUMO

Entry into sporulation in Bacillus subtilis is governed by a phosphorelay in which phosphoryl groups from a histidine kinase are successively transferred via relay proteins to the response regulator Spo0A. Spo0A~P, in turn, sets in motion events that lead to asymmetric division and activation of the cell-specific transcription factor σF, a hallmark for entry into sporulation. Here, we have used a microfluidics-based platform to investigate the activation of Spo0A and σF in individual cells held under constant, sporulation-inducing conditions. The principal conclusions were that: (i) activation of σF occurs with an approximately constant probability after adaptation to conditions of nutrient limitation; (ii) activation of σF is tightly correlated with, and preceded by, Spo0A~P reaching a high threshold level; (iii) activation of Spo0A takes place abruptly just prior to asymmetric division; and (iv) the primary source of noise in the activation of Spo0A is the phosphorelay. We propose that cells exhibit a constant probability of attaining a high threshold level of Spo0A~P due to fluctuations in the flux of phosphoryl groups through the phosphorelay.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Fatores de Transcrição/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Técnicas Analíticas Microfluídicas , Fosfatos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Esporos Bacterianos/genética , Transcrição Gênica
6.
PLoS Genet ; 13(7): e1006901, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28727759

RESUMO

Bacteria use a variety of stress-sensing systems to sense and respond to diverse stressors and to ensure their survival under adverse conditions. The gram-positive bacterium Bacillus subtilis responds to energy stress (ATP depletion) and to environmental stressors using two distinct stress-sensing pathways that converge on the alternative sigma factor σB to provoke a general stress response. Past efforts to study the σB stress response in bulk culture and on agarose pads were unable to visualize the responses of individual cells under tightly controlled conditions for extended periods of time. Here we use a microfluidics-based strategy to discern the basic features of σB activation in single cells in response to energy and environmental stress, both immediately upon stressor exposure and for tens of generations thereafter. Upon energy stress at various levels of stressor, cells exhibited fast, transient, and amplitude-modulated responses but not frequency modulation as previously reported. Upon environmental stress, which is mediated by the stressosome complex, wild-type cells primarily exhibited a transient and amplitude-modulated response. However, mutant cells producing only one of the four paralogous RsbR stressosome proteins showed striking and previously unseen differences. Whereas RsbRA-only cells mimicked the wild type, RsbRC-only cells displayed a slower but sustained overall response composed of repeated activation events in single cells.


Assuntos
Proteínas de Bactérias/genética , Metabolismo Energético/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Fator sigma/genética , Estresse Fisiológico/genética , Trifosfato de Adenosina/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Interação Gene-Ambiente , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos
7.
Annu Rev Genet ; 44: 365-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21047262

RESUMO

Bacteria, like eukaryotes, employ cytoskeletal elements to perform many functions, including cell morphogenesis, cell division, DNA partitioning, and cell motility. They not only possess counterparts of eukaryotic actin, tubulin, and intermediate filament proteins, but they also have cytoskeletal elements of their own. Unlike the rigid sequence and structural conservation often observed for eukaryotic cytoskeletal proteins, the bacterial counterparts can display considerable diversity in sequence and function across species. Their wide range of function highlights the flexibility of core cytoskeletal protein motifs, such that one type of cytoskeletal element can perform various functions, and one function can be performed by different types of cytoskeletal elements.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Citoesqueleto/metabolismo , Bactérias/química , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Citoesqueleto/química
8.
Mol Microbiol ; 99(3): 557-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26483285

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self-produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm-related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively. We also identified ptsP, which encodes enzyme I of the nitrogen-regulated phosphotransferase (PTS(Ntr)) system, as being important for cyclic-di-GMP production and for biofilm formation. Further experiments showed that biofilm formation is hindered in the absence of phosphotransfer through the PTS(Ntr), but only in the presence of enzyme II (PtsN), the putative regulatory module of the PTS(Ntr). These results implicate unphosphorylated PtsN as a negative regulator of biofilm formation and establish one of the first known roles of the PTS(Ntr) in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Nitrogênio/metabolismo , Fosfotransferases/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Fosfotransferases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
9.
Genes Dev ; 23(9): 1131-44, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19417107

RESUMO

Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism that controls the length of the structure by favoring lateral insertion of crescentin subunits over bipolar longitudinal extension when the structure ends reach the cell poles. The crescentin structure is stably anchored to the cell envelope, and this cellular organization requires MreB function, identifying a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each counterbalancing the other's torque.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Proteínas do Citoesqueleto/metabolismo , Filamentos Intermediários/metabolismo , Multimerização Proteica , Proteínas de Bactérias/química , Caulobacter crescentus/citologia , Caulobacter crescentus/genética , Ciclo Celular/fisiologia , Cloranfenicol/farmacologia , Proteínas do Citoesqueleto/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Multimerização Proteica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
10.
Appl Microbiol Biotechnol ; 100(10): 4607-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27003268

RESUMO

We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Imagem Óptica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Fluorescência , Concentração de Íons de Hidrogênio , Modelos Teóricos , Fenótipo
11.
mSphere ; 9(4): e0078623, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501832

RESUMO

Pseudomonas aeruginosa is a ubiquitous bacterium and a notorious opportunistic pathogen that forms biofilm structures in response to many environmental cues. Biofilm formation includes attachment to surfaces and the production of the exopolysaccharide Pel, which is present in both the PAO1 and PA14 laboratory strains of P. aeruginosa. Biofilms help protect bacterial cells from host defenses and antibiotics and abet infection. The carbon source used by the cells also influences biofilm, but these effects have not been deeply studied. We show here that glycerol, which can be liberated from host surfactants during infection, encourages surface attachment and magnifies colony morphology differences. We find that glycerol kinase is important but not essential for glycerol utilization and relatively unimportant for biofilm behaviors. Among downstream enzymes predicted to take part in glycerol utilization, Edd stood out as being important for glycerol utilization and for enhanced biofilm phenotypes in the presence of glycerol. Thus, gluconeogenesis and catabolism of anabolically produced glucose appear to impact not only the utilization of glycerol but also glycerol-stimulated biofilm phenotypes. Finally, waxworm moth larvae and nematode infection models reveal that interruption of the Entner-Doudoroff pathway, but not abrogation of glycerol phosphorylation, unexpectedly increases P. aeruginosa lethality in both acute and chronic infections, even while stimulating a stronger immune response by Caenorhabditis elegans.IMPORTANCEPseudomonas aeruginosa, the ubiquitous environmental bacterium and human pathogen, forms multicellular communities known as biofilms in response to various stimuli. We find that glycerol, a common carbon source that bacteria can use for energy and biosynthesis, encourages biofilm behaviors such as surface attachment and colony wrinkling by P. aeruginosa. Glycerol can be derived from surfactants that are present in the human lungs, a common infection site. Glycerol-stimulated biofilm phenotypes do not depend on phosphorylation of glycerol but are surprisingly impacted by a glucose breakdown pathway, suggesting that it is glycerol utilization, and not its mere presence or cellular import, that stimulates biofilm phenotypes. Moreover, the same mutations that block glycerol-stimulated biofilm phenotypes also impact P. aeruginosa virulence in both acute and chronic animal models. Notably, a glucose-breakdown mutant (Δedd) counteracts biofilm phenotypes but shows enhanced virulence and stimulates a stronger immune response in Caenorhabditis elegans.

12.
mSphere ; 9(2): e0071923, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38236030

RESUMO

The Gram-positive model organism Bacillus subtilis responds to environmental stressors by activating the alternative sigma factor σB. The sensing apparatus upstream of σB activation is thought to consist of cytoplasmic stressosomes-megadalton-sized protein complexes that include five paralogous proteins known as RsbRs. The RsbRs are presumed to be involved in stress sensing and the subsequent response. Perturbations to the RsbR complement in stressosomes by engineering cells that produce only one of the RsbR paralogs ("single-RsbR strains") lead to altered σB response dynamics with respect to timing and magnitude. Here, we asked whether such changes to σB response dynamics impact the relative fitness of a strain. We competed strain pairs with different RsbR complements under ethanol and sodium chloride stress and found not only differences in relative fitness among wild-type and single-RsbR strains but also different relative fitness values in the two different stressors. We found that the presence of RsbRA, which dominates the wild-type σB response, enhances fitness in ethanol but is detrimental to fitness in NaCl. Meanwhile, RsbRD-only cells were among the most fit in NaCl. Strains producing hybrid RsbR fusion proteins displayed different fitness values that depended on the RsbR proteins from which they were derived. Our results here suggest that σB response dynamics can impact fitness, highlighting the physiological importance of the unusual stressosome-based general stress response system of B. subtilis. IMPORTANCE: The model bacterium Bacillus subtilis uses cytoplasmic multiprotein complexes, termed stressosomes, to activate the alternative sigma factor σB when facing environmental stresses. We have previously shown that genetically manipulating the complement of putative sensor proteins in stressosomes can alter the dynamics of the σB response in terms of its magnitude and timing. However, it is unknown whether these response dynamics impact the fitness of cells challenged by environmental stressors. Here, we examine the fitness of strains with different σB responses by competing strain pairs in exponential-phase co-cultures under environmental stress. We find that strains with different response dynamics show different competitive indices that differ by stressor. These results suggest that the dynamics of the σB response can affect the fitness of cells facing environmental stress, highlighting the relevance of different σB dynamics.


Assuntos
Bacillus subtilis , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Bacillus subtilis/metabolismo , Cloreto de Sódio , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfoproteínas , Etanol
13.
EMBO J ; 28(9): 1208-19, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19279668

RESUMO

The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology.


Assuntos
Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Fenômenos Biomecânicos , Escherichia coli/citologia , Escherichia coli/genética , Immunoblotting , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Filamentos Intermediários/fisiologia , Microscopia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína
14.
Proc Natl Acad Sci U S A ; 107(22): 10086-91, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479277

RESUMO

The propagation of cell shape across generations is remarkably robust in most bacteria. Even when deformations are acquired, growing cells progressively recover their original shape once the deforming factors are eliminated. For instance, straight-rod-shaped bacteria grow curved when confined to circular microchambers, but straighten in a growth-dependent fashion when released. Bacterial cell shape is maintained by the peptidoglycan (PG) cell wall, a giant macromolecule of glycan strands that are synthesized by processive enzymes and cross-linked by peptide chains. Changes in cell geometry require modifying the PG and therefore depend directly on the molecular-scale properties of PG structure and synthesis. Using a mathematical model we quantify the straightening of curved Caulobacter crescentus cells after disruption of the cell-curving crescentin structure. We observe that cells straighten at a rate that is about half (57%) the cell growth rate. Next we show that in the absence of other effects there exists a mathematical relationship between the rate of cell straightening and the processivity of PG synthesis-the number of subunits incorporated before termination of synthesis. From the measured rate of cell straightening this relationship predicts processivity values that are in good agreement with our estimates from published data. Finally, we consider the possible role of three other mechanisms in cell straightening. We conclude that regardless of the involvement of other factors, intrinsic properties of PG processivity provide a robust mechanism for cell straightening that is hardwired to the cell wall synthesis machinery.


Assuntos
Proteínas de Bactérias/biossíntese , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Modelos Biológicos , Peptidoglicano/biossíntese , Proteínas de Bactérias/química , Fenômenos Biofísicos , Caulobacter crescentus/crescimento & desenvolvimento , Parede Celular/metabolismo , Cinética , Peptidoglicano/química , Processamento de Proteína Pós-Traducional
15.
mSphere ; 8(5): e0037423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754547

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is widely known for infecting patients with underlying conditions. This species often survives antibiotic therapy by forming biofilms, in which the cells produce a protective extracellular matrix. P. aeruginosa also produces virulence factors that enhance its ability to cause disease. One signaling pathway that influences virulence is the nitrogen-related phosphotransferase system (Nitro-PTS), which consists of an initial phosphotransferase, PtsP, a phosphocarrier, PtsO, and a terminal phosphate receptor, PtsN. The physiological role of the Nitro-PTS in P. aeruginosa is poorly understood. However, PtsN, when deprived of its upstream phosphotransfer proteins, has an antagonistic effect on biofilm formation. We thus conducted a transposon mutagenesis screen in an unphosphorylated-PtsN (i.e., ∆ptsP) background to identify downstream proteins with unacknowledged roles in PtsN-mediated biofilm suppression. We found an unstudied gene, PA14_04030, whose disruption restored biofilm production. This gene encodes a predicted phospholipase with signature alpha/beta hydrolase folds and a lipase signature motif with an active-site Ser residue. Hence, we renamed the gene bipL, for biofilm-impacting phospholipase. Deletion of bipL in a ∆ptsP background increased biofilm formation, supporting the idea that BipL is responsible for reducing biofilm formation in strains with unphosphorylated PtsN. Moreover, substituting the putative catalytic Ser for Ala phenocopied bipL deletion, indicating that this residue is important for the biofilm-suppressive activity of BipL in vivo. As our preliminary data suggest that BipL is a lipase, we performed lipidomics to detect changes in the lipid profile due to bipL deletion and found changes in some lipid species. IMPORTANCE Biofilm formation by bacteria occurs when cells secrete an extracellular matrix that holds them together and shields them from environmental insults. Biofilms of bacterial opportunistic human pathogens such as Pseudomonas aeruginosa pose a substantial challenge to clinical antimicrobial therapy. Hence, a more complete knowledge about the bacterial factors that influence and regulate production of the biofilm matrix is one key to formulate more effective therapeutic strategies. In this study, we screen for factors that are important for reducing biofilm matrix production in certain genetic backgrounds. We unexpectedly found a gene encoding a putative lipase enzyme and showed that its predicted catalytic site is important for its ability to reduce biofilm formation. Our findings suggest that lipase enzymes have previously uncharacterized functions in biofilm matrix regulation.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Pseudomonas aeruginosa , Humanos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipase/genética , Lipase/metabolismo , Fosfotransferases/genética , Fosfolipases/metabolismo , Lipídeos
16.
Microbiol Spectr ; : e0377422, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971546

RESUMO

Pseudomonas aeruginosa commonly infects hospitalized patients and the lungs of individuals with cystic fibrosis. This species is known for forming biofilms, which are communities of bacterial cells held together and encapsulated by a self-produced extracellular matrix. The matrix provides extra protection to the constituent cells, making P. aeruginosa infections challenging to treat. We previously identified a gene, PA14_16550, which encodes a DNA-binding TetR-type repressor and whose deletion reduced biofilm formation. Here, we assessed the transcriptional impact of the 16550 deletion and found six differentially regulated genes. Among them, our results implicated PA14_36820 as a negative regulator of biofilm matrix production, while the remaining 5 had modest effects on swarming motility. We also screened a transposon library in a biofilm-impaired ΔamrZ Δ16550 strain for restoration of matrix production. Surprisingly, we found that disruption or deletion of recA increased biofilm matrix production, both in biofilm-impaired and wild-type strains. Because RecA functions both in recombination and in the DNA damage response, we asked which function of RecA is important with respect to biofilm formation by using point mutations in recA and lexA to specifically disable each function. Our results implied that loss of either function of RecA impacts biofilm formation, suggesting that enhanced biofilm formation may be one physiological response of P. aeruginosa cells to loss of either RecA function. IMPORTANCE Pseudomonas aeruginosa is a notorious human pathogen well known for forming biofilms, communities of bacteria that protect themselves within a self-secreted matrix. Here, we sought to find genetic determinants that impacted biofilm matrix production in P. aeruginosa strains. We identified a largely uncharacterized protein (PA14_36820) and, surprisingly, RecA, a widely conserved bacterial DNA recombination and repair protein, as negatively regulating biofilm matrix production. Because RecA has two main functions, we used specific mutations to isolate each function and found that both functions influenced matrix production. Identifying negative regulators of biofilm production may suggest future strategies to reduce the formation of treatment-resistant biofilms.

17.
bioRxiv ; 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711731

RESUMO

The opportunistic bacterium Pseudomonas aeruginosa uses the LasR-I quorum sensing system to increase resistance to the aminioglycoside antibiotic tobramycin. Paradoxically, lasR-null mutants are commonly isolated from chronic human infections treated with tobramycin, suggesting there may be a mechanism allowing the lasR-null mutants to persist under tobramycin selection. We hypothesized that the effects of inactivating lasR on tobramycin resistance might be dependent on the presence or absence of other gene mutations in that strain, a phenomenon known as epistasis. To test this hypothesis, we inactivated lasR in several highly tobramycin-resistant isolates from long-term evolution experiments. We show that the effects of ΔlasR on tobramycin resistance are strain dependent. The effects can be attributed to a point mutation in the gene encoding the translation elongation factor fusA1 (G61A nucleotide substitution), which confers a strong selective advantage to lasR-null PA14 under tobramycin selection. This fusA1 G61A mutation results in increased activity of the MexXY efflux pump and expression of the mexXY regulator ArmZ. The fusA1 mutation can also modulate ΔlasR mutant resistance to two other antibiotics, ciprofloxacin and ceftazidime. Our results demonstrate the importance of epistatic gene interactions on antibiotic susceptibility of lasR-null mutants. These results support of the idea that gene interactions might play a significant role in the evolution of quorum sensing in P. aeruginosa.

18.
J Cell Biol ; 179(3): 381-7, 2007 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-17967949

RESUMO

The bacterial world is full of varying cell shapes and sizes, and individual species perpetuate a defined morphology generation after generation. We review recent findings and ideas about how bacteria use the cytoskeleton and other strategies to regulate cell growth in time and space to produce different shapes and sizes.


Assuntos
Parede Celular/fisiologia , Citoesqueleto/fisiologia , Pele/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/fisiologia , Biologia Celular , Forma Celular , Proteínas do Citoesqueleto/fisiologia , Escherichia coli/metabolismo , Humanos , Modelos Biológicos , Morfogênese , Pressão , Fenômenos Fisiológicos da Pele
19.
Microbiol Spectr ; 10(4): e0116722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35708338

RESUMO

Pyocins are interbacterial killing complexes made by Pseudomonas aeruginosa primarily to enact intraspecific competition. DNA damage and the ensuing activation of RecA initiate canonical pyocin expression. We recently discovered that deletion of xerC, which encodes a tyrosine recombinase involved in chromosome decatenation, markedly elevates basal pyocin production independently of RecA. Interestingly, the already-elevated basal pyocin expression in ΔxerC cells is substantially further increased by ciprofloxacin treatment. Here, we asked whether this further increase is due to DNA damage additionally activating the canonical RecA-dependent pyocin expression pathway. We also interrogated the relationship between XerC recombinase activity and pyocin expression. Surprisingly, we find that DNA damage-induced pyocin stimulation in ΔxerC cells is independent of RecA but dependent on PrtN, implying a RecA-independent means of DNA damage sensing that activates pyocin expression via PrtN. In sharp contrast to the RecA independence of pyocin expression in ΔxerC strains, specific mutational inactivation of XerC recombinase activity (XerCY272F) caused modestly elevated basal pyocin expression and was further stimulated by DNA-damaging drugs, but both effects were fully RecA dependent. To test whether pyocins could be induced by chemically inactivating XerC, we deployed a previously characterized bacterial tyrosine recombinase inhibitor. However, the inhibitor did not activate pyocin expression even at growth-inhibitory concentrations, suggesting that its principal inhibitory activity resembles neither XerC absence nor enzymatic inactivation. Collectively, our results imply a second function of XerC, separate from its recombinase activity, whose absence permits RecA-independent but DNA damage-inducible pyocin expression. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa produces pyocins-intraspecific, interbacterial killing complexes. The canonical pathway for pyocin production involves DNA damage and RecA activation. Pyocins are released by cell lysis, making production costly. We previously showed that cells lacking the tyrosine recombinase XerC produce pyocins independently of RecA. Here, we show that DNA-damaging agents stimulate pyocin expression in ΔxerC strains without involving RecA. However, strains mutated for XerC recombinase activity display strictly RecA-dependent pyocin production, and a known bacterial tyrosine recombinase inhibitor does not elicit pyocin expression. Our results collectively suggest that the use of XerC inhibition as an antipseudomonal strategy will require targeting the second function of XerC in regulating noncanonical pyocin production rather than targeting its recombinase activity.


Assuntos
Pseudomonas aeruginosa , Piocinas , Dano ao DNA , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Piocinas/farmacologia , Recombinases/genética , Recombinases/metabolismo , Recombinases/farmacologia , Tirosina/genética , Tirosina/metabolismo , Tirosina/farmacologia
20.
mBio ; 13(6): e0200122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409125

RESUMO

Bacteria use a variety of systems to sense stress and mount an appropriate response to ensure fitness and survival. Bacillus subtilis uses stressosomes-cytoplasmic multiprotein complexes-to sense environmental stressors and enact the general stress response by activating the alternative sigma factor σB. Each stressosome includes 40 RsbR proteins, representing four paralogous (RsbRA, RsbRB, RsbRC, and RsbRD) putative stress sensors. Population-level analyses suggested that the RsbR paralogs are largely redundant, while our prior work using microfluidics-coupled fluorescence microscopy uncovered differences among the RsbR paralogs' σB response profiles with respect to timing and intensity when facing an identical stressor. Here, we use a similar approach to address the question of whether the σB responses mediated by each paralog differ in the presence of different environmental stressors: can they distinguish among stressors? Wild-type cells (with all four paralogs) and RsbRA-only cells activate σB with characteristic transient response timing irrespective of stressor but show various response magnitudes. However, cells with other individual RsbR paralogs show distinct timing and magnitude in their responses to ethanol, salt, oxidative, and acid stress, implying that RsbR proteins can distinguish among stressors. Experiments with hybrid fusion proteins comprising the N-terminal half of one paralog and the C-terminal half of another argue that the N-terminal identity influences response magnitude and that determinants in both halves of RsbRA are important for its stereotypical transient σB response timing. IMPORTANCE Bacterial survival depends on appropriate responses to diverse stressors. The general stress-response system in the environmental model bacterium Bacillus subtilis is constantly poised for an immediate response and uses unusual stress-sensing protein complexes called stressosomes. Stressosomes typically contain four different types of putative sensing protein. We asked whether each type of sensor has a distinct role in mediating response dynamics to different environmental stressors. We find that one sensor type always mediates a transient response, while the others show distinct response magnitude and timing to different stressors. We also find that a transient response is exceptional, as several engineered hybrid proteins did not show strong transient responses. Our work reveals functional distinctions among subunits of the stressosome complex and represents a step toward understanding how the general stress response of B. subtilis ensures its survival in natural environmental settings.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Fator sigma/genética , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA