Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Theor Appl Genet ; 136(1): 20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683081

RESUMO

KEY MESSAGE: Fifteen and eleven loci, with most loci being novel, were identified to associate with seedling and adult resistances, respectively, to the durum-specific races of leaf rust pathogen in cultivated emmer. Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Triticum/genética , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Doenças das Plantas/genética , Plântula/genética
2.
Plant J ; 106(6): 1674-1691, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825238

RESUMO

The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37-rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.


Assuntos
Alelos , Evolução Biológica , Variação Genética , Proteínas de Plantas/metabolismo , Tetraploidia , Triticum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Haplótipos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Puccinia
3.
Theor Appl Genet ; 135(12): 4409-4419, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201026

RESUMO

KEY MESSAGE: We identified and integrated the novel FHB-resistant Fhb7The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived (Thinopyrum elongatum, genome EE) Fhb7 allele, designated Fhb7The2, was identified and integrated into the wheat B genome through a small 7B-7E translocation (7BS·7BL-7EL) involving the terminal regions of the long arms. Fhb7The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum-derived Fhb7 allele Fhb7Thp. This will further improve the utility of Fhb7The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7The2, Fhb7Thp, and another Th. elongatum-derived Fhb7 allele Fhb7The1, which led to seven amino acid conversions in Fhb7The2, Fhb7Thp, and Fhb7The1, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7The2. The 7EL segment containing Fhb7The2 in the translocation chromosome 7BS·7BL-7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.


Assuntos
Fusarium , Triticum , Triticum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Poaceae/genética
4.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748907

RESUMO

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Diploide , Resistência à Doença/genética , Genes de Plantas , Haplótipos , Doenças das Plantas/genética , Puccinia
5.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887074

RESUMO

Sclerotinia head rot (HR), caused by Sclerotinia sclerotiorum, is an economically important disease of sunflower with known detrimental effects on yield and quality in humid climates worldwide. The objective of this study was to gain insight into the genetic architecture of HR resistance from a sunflower line HR21 harboring HR resistance introgressed from the wild perennial Helianthus maximiliani. An F2 population derived from the cross of HA 234 (susceptible-line)/HR21 (resistant-line) was evaluated for HR resistance at two locations during 2019−2020. Highly significant genetic variations (p < 0.001) were observed for HR disease incidence (DI) and disease severity (DS) in both individual and combined analyses. Broad sense heritability (H2) estimates across environments for DI and DS were 0.51 and 0.62, respectively. A high-density genetic map of 1420.287 cM was constructed with 6315 SNP/InDel markers developed using genotype-by-sequencing technology. A total of 16 genomic regions on eight sunflower chromosomes, 1, 2, 10, 12, 13, 14, 16 and 17 were associated with HR resistance, each explaining between 3.97 to 16.67% of the phenotypic variance for HR resistance. Eleven of these QTL had resistance alleles from the HR21 parent. Molecular markers flanking the QTL will facilitate marker-assisted selection breeding for HR resistance in sunflower.


Assuntos
Ascomicetos , Helianthus , Ascomicetos/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Helianthus/genética , Doenças das Plantas/genética , Locos de Características Quantitativas
6.
Theor Appl Genet ; 133(12): 3455-3467, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32930833

RESUMO

KEY MESSAGE: We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Genoma de Planta , Recombinação Homóloga , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Aegilops/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
7.
Theor Appl Genet ; 133(4): 1277-1289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970450

RESUMO

KEY MESSAGE: We performed homoeologous recombination-based partitioning and physical mapping of wheat chromosome 3B and Th. elongatum chromosome 3E, providing a unique physical framework of this homoeologous pair for genome studies. The wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) and Thinopyrum elongatum (2n = 2x = 14, EE) genomes can be differentiated from each other by fluorescent genomic in situ hybridization (FGISH) as well as molecular markers. This has facilitated homoeologous recombination-based partitioning and engineering of their genomes for physical mapping and alien introgression. Here, we constructed a special wheat genotype, which was double monosomic for wheat chromosome 3B and Th. elongatum chromosome 3E and homozygous for the ph1b mutant, to induce 3B-3E homoeologous recombination. Totally, 81 3B-3E recombinants were recovered and detected in the primary, secondary, and tertiary homoeologous recombination cycles by FGISH. Comparing to the primary recombination, the secondary and tertiary recombination shifted toward the proximal regions due to the increase in homology between the pairing partners. The 3B-3E recombinants were genotyped by high-throughput wheat 90-K single nucleotide polymorphism (SNP) arrays and their recombination breakpoints physically mapped based on the FGISH patterns and SNP results. The 3B-3E recombination physically partitioned chromosome 3B into 38 bins, and 429 SNPs were assigned to the distinct bins. Integrative analysis of FGISH and SNP results led to the construction of a composite bin map for chromosome 3B. Additionally, we developed 22 SNP-derived semi-thermal asymmetric reverse PCR markers specific for chromosome 3E and constructed a comparative map of homoeologous chromosomes 3E, 3B, 3A, and 3D. In summary, this work provides a unique physical framework for further studies of the 3B-3E homoeologous pair and diversifies the wheat genome for wheat improvement.


Assuntos
Cromossomos de Plantas/genética , Recombinação Homóloga/genética , Mapeamento Físico do Cromossomo , Poaceae/genética , Triticum/genética , Pontos de Quebra do Cromossomo , Polimorfismo de Nucleotídeo Único/genética
8.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098308

RESUMO

Phomopsis stem canker (PSC) caused by Diaporthe helianthi is increasingly becoming a global threat for sunflower production. In this study, the genetic basis of PSC resistance was investigated in a recombinant inbred line (RIL) population developed from a cross between HA 89 (susceptible) and HA-R3 (resistant). The RIL population was evaluated for PSC disease incidence (DI) in seven screening trials at multiple locations during 2016-2018. The distribution of PSC DI in the RIL population was continuous, confirming a polygenic inheritance of the trait. A moderately high broad-sense heritability (H2, 0.76) was estimated for the trait across environments. In the combined analysis, both the genotype and the genotype × environment interactions were highly significant. A linkage map spanning 1505.33 cM was constructed using genotyping-by-sequencing derived markers. Marker-trait association analysis identified a total of 15 quantitative trait loci (QTL) associated with PSC resistance on 11 sunflower chromosomes, each explaining between 5.24 and 17.39% of the phenotypic variation. PSC resistance QTL were detected in two genomic regions each on chromosomes 3, 5, 13, and 17, while one QTL each was detected in the remaining seven chromosomes. Tightly linked single nucleotide polymorphism (SNP) markers flanking the PSC resistance QTL will facilitate marker-assisted selection in PSC resistance sunflower breeding.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Helianthus/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Genótipo , Helianthus/classificação , Helianthus/microbiologia , Escore Lod , Fenótipo , Doenças das Plantas/microbiologia
9.
Theor Appl Genet ; 132(1): 195-204, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30343385

RESUMO

KEY MESSAGE: We detected the deletion breakpoints of wheat ph1b mutant and the actual size of the deletion. Also, we developed ph1b deletion-specific markers useful for ph1b-mediated gene introgression and genome studies. The Ph1 (pairing homoeologous) locus has been considered a major genetic system for the diploidized meiotic behavior of the allopolyploid genome in wheat. It functions as a defense system against meiotic homoeologous pairing and recombination in polyploid wheat. A large deletion of the genomic region harboring Ph1 on the long arm of chromosome 5B (5BL) led to the ph1b mutant in hexaploid wheat 'Chinese Spring,' which has been widely used to induce meiotic homoeologous recombination for gene introgression from wild grasses into wheat. However, the breakpoints and physical size of the deletion remain undetermined. In the present study, we first anchored the ph1b deletion on 5BL by the high-throughput wheat 90K SNP assay and then delimited the deletion to a genomic region of 60,014,523 bp by chromosome walking. DNA marker and sequence analyses detected the nucleotide positions of the distal and proximal breakpoints (DB and PB) of the ph1b deletion and the deletion junction as well. This will facilitate understanding of the genomic region harboring the Ph1 locus in wheat. In addition, we developed user-friendly DNA markers specific for the ph1b deletion. These new ph1b deletion-specific markers will dramatically improve the efficacy of the ph1b mutant in the meiotic homoeologous recombination-based gene introgression and genome studies in wheat and its relatives.


Assuntos
Cromossomos de Plantas/genética , Marcadores Genéticos , Deleção de Sequência , Triticum/genética , Passeio de Cromossomo , Recombinação Homóloga , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Poliploidia , Sitios de Sequências Rotuladas
10.
Theor Appl Genet ; 132(9): 2605-2614, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183521

RESUMO

KEY MESSAGE: We identified, mapped and introduced novel Aegilops speltoides-derived resistance genes for tan spot and SNB diseases into wheat, enhancing understanding and utilization of host resistance to both diseases in wheat. Tan spot and Septoria nodorum blotch (SNB) are two important fungal diseases of wheat. Resistance to these diseases is often observed as the lack of sensitivity to the necrotrophic effectors (NE) produced by the fungal pathogens and thus exhibits a recessive inheritance pattern. In this study, we identified novel genes for resistance to tan spot and SNB on Aegilops speltoides (2n = 2x = 14, genome SS) chromosome 2S. These genes confer dominant resistance in the wheat background, indicating a distinct NE-independent mechanism of resistance. Ae. speltoides chromosome 2S was engineered for resistance gene introgression and molecular mapping by inducing meiotic homoeologous recombination with wheat chromosome 2B. Twenty representative 2B-2S recombinants were evaluated for reaction to tan spot and SNB and were delineated by genomic in situ hybridization and high-throughput wheat 90 K SNP assay. The resistance genes physically mapped to the sub-telomeric region (~ 8 Mb) on the short arm of chromosome 2S and designated TsrAes1 for tan spot resistance and SnbAes1 for SNB resistance. In addition, we developed SNP-derived PCR markers closely linked to TsrAes1/SnbAes1 for marker-assisted selection in wheat breeding. TsrAes1 and SnbAes1 are the first set of NE-independent tan spot, and SNB resistance genes are identified from Ae. speltoides. The 2SS-2BS·2BL recombinants with minimal amounts of Ae. speltoides chromatin containing TsrAes1/SnbAes1 were produced for germplasm development, making the wild species-derived resistance genes usable in wheat breeding. This will strengthen and diversify resistance of wheat to tan spot and SNB and facilitate understanding of resistance to these two diseases.


Assuntos
Aegilops/genética , Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Aegilops/crescimento & desenvolvimento , Aegilops/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Genótipo , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
11.
BMC Plant Biol ; 18(1): 224, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305022

RESUMO

BACKGROUND: Meiosis is a specialized cell division critical for gamete production in the sexual reproduction of eukaryotes. It ensures genome integrity and generates genetic variability as well. The Rec8-like cohesin is a cohesion protein essential for orderly chromosome segregation in meiotic cell division. The Rec8-like genes and cohesins have been cloned and characterized in diploid models, but not in polyploids. The present study aimed to clone the homoeologous genes (homoeoalleles) for Rec8-like cohesin in polyploid wheat, an important food crop for humans, and to characterize their structure and function under a polyploid condition. RESULTS: We cloned two Rec8-like homoeoalleles from tetraploid wheat (TtRec8-A1 and TtRec8-B1) and one from hexaploid wheat (TaRec8-D1), and performed expression and functional analyses of the homoeoalleles. Also, we identified other two Rec8 homoeoalleles in hexaploid wheat (TaRec8-A1 and TaRec8-B1) and the one in Aegilops tauschii (AetRec8-D1) by referencing the DNA sequences of the Rec8 homoeoalleles cloned in this study. The coding DNA sequences (CDS) of these six Rec8 homoeoalleles are all 1,827 bp in length, encoding 608 amino acids. They differed from each other primarily in introns although single nucleotide polymorphisms were detected in CDS. Substantial difference was observed between the homoeoalleles from the subgenome B (TtRec8-B1 and TaRec8-B1) and those from the subgenomes A and D (TtRec8-A1, TaRec8-A1, and TaRec8-D1). TtRec8-A1 expressed dominantly over TtRec8-B1, but comparably to TaRec8-D1, in polyploid wheat. In addition, we developed the antibody against wheat Rec8 and used the antibody to detect Rec8 cohesin in the Western blotting and subcellular localization analyses. CONCLUSIONS: The Rec8 homoeoalleles from the subgenomes A and D are transcriptionally more active than the one from the subgenome B in polyploid wheat. The structural variation and differential expression of the Rec8 homoeoalleles indicate a unique cross-genome coordination of the homoeologous genes in polyploid wheat, and imply the distinction of the wheat subgenome B from the subgenomes A and D in the origin and evolution.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Éxons , Regulação da Expressão Gênica de Plantas , Haploidia , Íntrons , Meiose , Proteínas de Plantas/metabolismo , Poliploidia , Coesinas
12.
Theor Appl Genet ; 131(11): 2381-2395, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30109393

RESUMO

KEY MESSAGE: We physically dissected and mapped wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum based on meiotic homoeologous recombination, providing a unique physical framework for genome studies. Common wheat has a large and complex genome with narrow genetic diversity and various degrees of recombination between the A, B, and D subgenomes. This has limited the homologous recombination-based genome studies in wheat. Here, we exploited meiotic homoeologous recombination for molecular mapping of wheat chromosome 2B and its homoeologue 2S from Aegilops speltoides and 2E from Thinopyrum elongatum. The 2B-2S and 2B-2E recombination was induced by the ph1b mutant, and recovered using molecular markers and fluorescent genomic in situ hybridization (FGISH). A total of 112 2B-2S and 87 2B-2E recombinants involving different chromosome regions were developed and physically delineated by FGISH. The 2B-2S and 2B-2E recombination hotspots mapped to the subterminal regions on both arms. Recombination hotspots with the highest recombination rates mapped to the short arms. Eighty-three 2B-2S and 67 2B-2E recombinants were genotyped using the wheat 90 K SNP arrays. Based on the genotyping results and FGISH patterns of the recombinants, chromosomes 2B, 2S, and 2E were partitioned into 93, 66, and 46 bins, respectively. In total, 1037 SNPs physically mapped onto distinct bins of these three homoeologous chromosomes. A homoeologous recombination-based bin map was constructed for chromosome 2B, providing a unique physical framework for genome studies in wheat and its relatives. Meiotic homoeologous recombination also facilitates gene introgression to diversify the wheat genome for germplasm development. Therefore, homoeologous recombination-based studies enhance understanding of the wheat genome and its homoeologous counterparts from wild grasses, and expand the genetic variability of the wheat genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Recombinação Homóloga , Meiose , Poaceae/genética , Triticum/genética , Marcadores Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único
13.
Theor Appl Genet ; 131(2): 365-375, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29094182

RESUMO

KEY MESSAGE: This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.


Assuntos
Genoma de Planta , Triticum/genética , Cromossomos de Plantas/genética , Citogenética , Evolução Molecular , Genômica
14.
Theor Appl Genet ; 129(1): 31-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26385373

RESUMO

KEY MESSAGE: New molecular markers were developed and mapped to the FHB resistance QTL region in high resolution. Micro-collinearity of the QTL region with rice and Brachypodium was revealed for a better understanding of the genomic region. The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better understanding of the genomic region harboring Qfhs.ndsu-3AS and to improve the utility of the QTL in wheat breeding. Micro-collinearity of the QTL region with rice chromosome 1 and Brachypodium chromosome 2 was identified and used for marker development in saturation mapping. A total of 42 new EST-derived sequence tagged site (STS) and simple sequence repeat (SSR) markers were developed and mapped to the QTL and nearby regions on 3AS. Further comparative analysis revealed a complex collinearity of the 3AS genomic region with their collinear counterparts of rice and Brachypodium. Fine mapping of the QTL region resolved five co-segregating markers (Xwgc1186/Xwgc716/Xwgc1143/Xwgc501/Xwgc1204) into three distinct loci proximal to Xgwm2, a marker previously reported to be closely linked to the QTL. Four other markers (Xwgc1226, Xwgc510, Xwgc1296, and Xwgc1301) mapped farther proximal to the above markers in the QTL region with a higher resolution. Five homozygous recombinants with shortened T. dicoccoides chromosomal segments in the QTL region were recovered by molecular marker analysis and evaluated for FHB resistance. Qfhs.ndsu-3AS was positioned to a 5.2 cM interval flanked by the marker Xwgc501 and Xwgc510. The recombinants containing Qfhs.ndsu-3AS and new markers defining the QTL will facilitate utilization of this resistance source in wheat breeding.


Assuntos
Resistência à Doença/genética , Fusarium , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Brachypodium/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta , Genótipo , Repetições de Microssatélites , Oryza/genética , Doenças das Plantas/microbiologia , Sitios de Sequências Rotuladas , Triticum/microbiologia
15.
J Plant Res ; 129(5): 899-907, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27229891

RESUMO

Despite the paraquat-resistant mutants that have been reported in plants, this study identified a novel A. thaliana mutant (pqr2) from an XVE inducible activation library based on its resistance to 2 µM paraquat. The pqr2 mutant exhibited a termination mutation in the exon of AT1G31830/PAR1/PQR2, encoded a polyamine uptake transporter AtPUT2/PAR1/PQR2. The PQR2 mutation could largely reduce superoxide accumulation and cell death in the pqr2 plants under paraquat treatment. Moreover, compared with wild type, the pqr2 mutant exhibited much reduced tolerance to putrescine, a classic polyamine compound, which confirmed that PQR2 encoded a defective polyamine transporter. Notably, co-treated with ABA and paraquat, both pqr2 mutant and wild type exhibited a lethal phenotype from seed germination, but the wild type like pqr2 mutant, could remain paraquat-resistance while co-treated with high dosage of Na2WO4, an ABA synthesis inhibitor. Gene expression analysis suggested that ABA signaling should widely regulate paraquat-responsive genes distinctively in wild type and pqr2 mutant. Hence, this study has for the first time reported about ABA negative effect on paraquat-resistance in A. thaliana, providing insight into the ABA signaling involved in the oxidative stress responses induced by paraquat in plants.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistência a Herbicidas , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Paraquat/toxicidade , Poliaminas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Fenótipo
16.
Theor Appl Genet ; 128(12): 2403-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26239411

RESUMO

KEY MESSAGE: A compensating, recombined Lr59 translocation with greatly reduced alien chromatin was identified. Microsatellite locus Xdupw217 occurs within the remaining segment and can be used as a co-dominant marker for Lr59. In earlier studies, leaf rust (caused by Puccinia triticina Eriks.) resistance gene Lr59 was transferred from Aegilops peregrina (Hackel) Maire et Weiler to chromosome arm 1AL of common wheat (Triticum aestivum L.). The resistance gene was then genetically mapped on the translocated chromosome segment following homoeologous pairing induction. Eight recombinants that retained the least alien chromatin apparently resulted from crossover within a terminal region of the translocation that was structurally different from 1AL. These recombinants could not be differentiated by size, and it was not clear whether they were compensating in nature. The present study determined that the distal part of the original translocation has group 6 chromosome homoeology and a 6BS telomere (with the constitution of the full translocation chromosome being 1AS·1L(P)·6S(P) ·6BS). During the allosyndetic pairing induction experiment to map and shorten the full size translocation, a low frequency of quadrivalents involving 1A, the 1A translocation, and two 6B chromosomes was likely formed. Crossover within such quadrivalents apparently produced comparatively small compensating alien chromatin inserts within the 6BS satellite region on chromosome 6B of seven of the eight recombinants. It appears that the Gli-B2 storage protein locus on 6BS has not been affected by the recombination events, and the translocations are therefore not expected to affect baking quality. Simple sequence repeat marker results showed that Lr59-151 is the shortest recombinant, and it will therefore be used in breeding. Marker DUPW217 detects a homoeo-allele within the remaining alien chromatin that can be used for marker-assisted selection of Lr59.


Assuntos
Genes de Plantas , Poaceae/genética , Translocação Genética , Triticum/genética , Cromatina/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Hibridização In Situ , Repetições de Microssatélites , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
17.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337872

RESUMO

Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome's polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38861444

RESUMO

The integration of visualizations and text is commonly found in data news, analytical reports, and interactive documents. For example, financial articles are presented along with interactive charts to show the changes in stock prices on Yahoo Finance. Visualizations enhance the perception of facts in the text while the text reveals insights of visual representation. However, effectively combining text and visualizations is challenging and tedious, which usually involves advanced programming skills. This paper proposes a semi-automatic pipeline that builds links between text and visualization. To resolve the relationship between text and visualizations, we present a method which structures a visualization and the underlying data as a contextual knowledge graph, based on which key phrases in the text are extracted, grouped, and mapped with visual elements. To support flexible customization of text-visualization links, our pipeline incorporates user knowledge to revise the links in a mixed-initiative manner. To demonstrate the usefulness and the versatility of our method, we replicate prior studies or cases in crafting interactive word-sized visualizations, annotating visualizations, and creating text-chart interactions based on a prototype system. We carry out two preliminary model tests and a user study and the results and user feedbacks suggest our method is effective.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38277251

RESUMO

We conduct two in-lab experiments (N=93) to evaluate the effectiveness of Gantt charts, extended Gantt charts, and stringline charts for visualizing fixed-order event sequence data. We first formulate five types of event sequences and define three types of sequence elements: point events, interval events, and the temporal gaps between them. Our two experiments focus on event sequences with a pre-defined, fixed order, and measure task error rates and completion time. The first experiment shows single sequences and assesses the three charts' performance in comparing event duration or gap. The second experiment shows multiple sequences and evaluates how well the charts reveal temporal patterns. The results suggest that when visualizing single fixed-order event sequences, 1) Gantt and extended Gantt charts lead to comparable error rates in the duration-comparing task; 2) Gantt charts exhibit either shorter or equal completion time than extended Gantt charts; 3) both Gantt and extended Gantt charts demonstrate shorter completion times than stringline charts; 4) however, stringline charts outperform the other two charts with fewer errors in the comparing task when event type counts are high. Additionally, when visualizing multiple point-based fixed-order event sequences, stringline charts require less time than Gantt charts for people to find temporal patterns. Based on these findings, we discuss design opportunities for visualizing fixed-order event sequences and discuss future avenues for optimizing these charts.

20.
Chromosome Res ; 20(6): 699-715, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22968763

RESUMO

Thirteen common wheat "Chinese Spring" (CS)-Thinopyrum junceum addition lines and three common wheat "Fukuhokomuji"(Fuku)-Elymus rectisetus addition lines were characterized and verified as disomic additions of a Th. junceum or E. rectisetus chromosome in the wheat backgrounds by fluorescent genomic in situ hybridization. Another Fuku-E. rectisetus addition line, A1048, was found to contain multiple segregating E. rectisetus chromosomes. Seven partial CS-Th. junceum amphiploids were identified to combine 12-16 Th. junceum chromosomes with CS wheat chromosomes. The disomic addition lines AJDAj5, 7, 8, 9, and HD3508 were identified to contain a Th. junceum chromosome in homoeologous group 1. Two of them, AJDAj7 and AJDAj9, had the same Th. junceum chromosome. AJDAj2, 3, and 4 contained a Th. junceum chromosome in group 2, HD3505 in group 4, AJDAj6 and AJDAj11 in group 5, and AJDAj1 probably in group 6. The disomic addition lines A1026 and A1057 were identified to carry an E. rectisetus chromosome in group 1 and A1034 in group 5. E. rectisetus chromosomes in groups 1-6 were detected in A1048. The homoeologous group of the Th. junceum chromosome in HD3515 could not be determined in this study. Several Th. junceum and E. rectisetus chromosomes in the addition lines were found to contain genes for resistance to Fusarium head blight, tan spot, Stagonospora nodorum blotch, and stem rust (Ug99 races). Understanding of the homoeology of the Th. junceum and E. rectisetus chromosomes with wheat will facilitate utilization of the favorable genes on these alien chromosomes in wheat improvement.


Assuntos
Cruzamento/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Elymus/genética , Doenças das Plantas/microbiologia , Triticum/genética , Southern Blotting , Eletroforese em Gel de Poliacrilamida , Hibridização in Situ Fluorescente , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA