Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 937-944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720067

RESUMO

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos , Engenharia Metabólica , Saccharomyces cerevisiae , Saponinas , Adjuvantes Imunológicos/biossíntese , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/metabolismo , Vias Biossintéticas/genética , Desenho de Fármacos , Enzimas/genética , Enzimas/metabolismo , Engenharia Metabólica/métodos , Plantas/enzimologia , Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Relação Estrutura-Atividade
2.
Eur J Nucl Med Mol Imaging ; 51(4): 1163-1172, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032383

RESUMO

PURPOSE: To compare the diagnostic value of [68 Ga]Ga-FAPI-04 PET/MR and [18F]FDG PET/CT in patients with T stage ≤ 2a2 uterine cervical cancer patients. METHODS: Patients pathologically diagnosed with cervical cancer and with a T stage ≤ T2a2 were prospectively enrolled. All patients underwent whole-body [68 Ga]Ga-FAPI-04 PET/MR and [18F]FDG PET/CT within 2 weeks, and surgical treatment was performed within 10 days after PET. RESULTS: Twenty-five patients were enrolled. Twenty patients underwent radical hysterectomy, among which all of them underwent pelvic lymphadenectomy, and 10 patients underwent para-aortic lymphadenectomy. Three patients received merely laparoscopic lymphadenectomy without hysterectomy. Two patients with both [18F]FDG and [68 Ga]Ga-FAPI-04 lymph node high metabolism were staged as FIGO IIIC1r, and concurrent chemoradiation therapy (CCRT) was performed. [18F]FDG and [68 Ga]Ga-FAPI-04 had equivalent detection ability on primary tumors, with a positive detection rate of 96.0%. The accuracy of T staging using [18F]FDG and [68 Ga]Ga-FAPI-04 was relatively 50% and 55.0%. Elevated and underrated staging was due to misdiagnosis of either vaginal infiltration or tumor size. In terms of lymph node metastasis detection, the specificity of [68 Ga]Ga-FAPI-04 was 100% (95% CI, 84.6% ~ 100.0%), which was significantly higher than [18F]FDG (59.1% (95% CI, 36.4% ~ 79.3%)) (p = 0.004). CONCLUSION: [68 Ga]Ga-FAPI-04 PET/MR and [18F]FDG PET/CT demonstrated an equivalent detection ability on cervical cancer primary tumors. However, [68 Ga]Ga-FAPI-04 PET/MR's diagnostic value in lymph node metastasis was significantly higher than [18F]FDG PET/CT. [68 Ga]Ga-FAPI-04 PET/MR has the potential for more accurate treatment planning, thus clarifying fertility preservation indications for early-stage young patients.


Assuntos
Quinolinas , Neoplasias do Colo do Útero , Feminino , Humanos , Fluordesoxiglucose F18 , Estudos Prospectivos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias do Colo do Útero/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Radioisótopos de Gálio
3.
Ecotoxicol Environ Saf ; 272: 116080, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350215

RESUMO

BACKGROUND: Serum prostate-specific antigen (PSA) is a primary metric for diagnosis and prognosis of prostate cancer (PCa). Exposure to heavy metals, such as lead, cadmium, mercury, and zinc can impact PSA levels in PCa patients. However, it is unclear whether this effect also occurs in men without PCa, which may lead to the overdiagnosis of PCa. METHOD: Data on a total of 5089 American men who had never been diagnosed with PCa were obtained from the National Health and Nutrition Examination Survey performed from 2003-2010. The relationship between serum PSA levels (dependent variable) and concentrations of lead (µmol/L), cadmium (nmol/L), and mercury (µmol/L) were investigated with dietary zinc intake being used as a potential modifier or covariate in a weighted linear regression model and a generalized additive model. A series of bootstrapping analyses were performed to evaluate sensitivity and specificity using these models. RESULTS: Regression analyses suggested that, in general, lead, cadmium, or mercury did not show an association with PSA levels, which was consistent with the results of the bootstrapping analyses. However, in a subgroup of participants with a high level of dietary zinc intake (≥14.12 mg/day), a significant positive association between cadmium and serum PSA was identified (1.06, 95% CI, P = 0.0268, P for interaction=0.0249). CONCLUSIONS: With high-level zinc intake, serum PSA levels may rise in PCa-free men as the exposure to cadmium increases, leading to a potential risk of an overdiagnosis of PCa and unnecessary treatment. Therefore, environmental variables should be factored in the current diagnostic model for PCa that is solely based on PSA measurements. Different criteria for PSA screening are necessary based on geographical variables. Further investigations are needed to uncover the biological and biochemical relationship between zinc, cadmium, and serum PSA levels to more precisely diagnose PCa.


Assuntos
Mercúrio , Metais Pesados , Masculino , Humanos , Estados Unidos , Antígeno Prostático Específico , Cádmio , Inquéritos Nutricionais , Zinco
4.
J Am Chem Soc ; 145(18): 10431-10440, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37099266

RESUMO

Great success in synthetic chemistry is motivated by the development of novel and reactive linchpins for carbon-carbon and carbon-heteroatom bond formation reactions, which has dramatically altered chemists' approach to building molecules. Herein, we report the ready synthesis of aryl sulfonium salts, a versatile electrophilic linchpin, via a novel Cu-mediated thianthrenation and phenoxathiination of commercially available arylborons with thianthrene and phenoxathiine, providing a series of aryl sulfonium salts in high efficiency. More importantly, by leveraging the sequential Ir-catalyzed C-H borylation and Cu-mediated thianthrenation of arylborons, the formal thianthrenation of arenes is also achieved. The Ir-catalyzed C-H borylation with undirected arenes normally occurred at the less steric hindrance position, thus providing a complementary method for thianthrenation of arenes in comparison with electrophilic thianthrenation. This process is capable of late-stage functionalization of a series of pharmaceuticals, which might find wide synthetic applications in both industry and academic sectors.

5.
Mol Med ; 29(1): 159, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996782

RESUMO

BACKGROUND: Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS: AECII MLE-12 cells were exposed to 0, 0.1, or 1 µg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS: We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS: We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.


Assuntos
Via de Sinalização Hippo , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Quinases Semelhantes a Duplacortina , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
6.
J Virol ; 96(18): e0093022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069544

RESUMO

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.


Assuntos
Infecções por Flavivirus , Flavivirus , Interações entre Hospedeiro e Microrganismos , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Endopeptidases/genética , Endopeptidases/metabolismo , Retroalimentação Fisiológica , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima
7.
Nanotechnology ; 33(21)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105828

RESUMO

Biomass-derived carbon materials have received a surge of scientific attention to develop lightweight and broadband microwave absorbers. Herein, rodlike porous carbon materials derived from cotton have been fabricated with uniformly dispersed CoFe2O4nanoparticles via facile and scalable process. The combination of magnetic particles and carbonaceous material is advantageous to realize the magnetic-dielectric synergistic effect which could effectively promote the dissipation of incident waves, giving rise to an optimal reflection loss value of -48.2 dB over a qualified bandwidth (4.8 GHz) at 2.5 mm. The cotton-derived carbon rods with conductive network not only act as a supporter to carry the CoFe2O4nanoparticles, but also provide massive heterointerfaces to facilitate the interfacial polarization. In consideration of the renewable and abundant resource of cotton, the as-prepared CoFe2O4/C composites would meet the increasing demand of lightweight and highly efficient microwave absorbers.

8.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012176

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in chronic lung disease patients throughout the world. Mesenchymal stem cells (MSCs) have been shown to regulate immunomodulatory, anti-inflammatory, and regenerative responses. However, the effects of human-umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) on the lung pathophysiology of COPD remain unclear. We aimed to investigate the role of hUC-MSCs in emphysema severity and Yes-associated protein (Yap) phosphorylation (p-Yap) in a porcine-pancreatic-elastase (PPE)-induced emphysema model. We observed that the emphysema percentages (normalized to the total lung volume) measured by chest computed tomography (CT) and exercise oxygen desaturation were significantly reduced by hUC-MSCs at 107 cells/kg body weight (BW) via intravenous administration in emphysematous mice (p < 0.05). Consistently, the emphysema index, as assessed by the mean linear intercept (MLI), significantly decreased with hUC-MSC administration at 3 × 106 and 107 cells/kg BW (p < 0.05). Changes in the lymphocytes, monocytes, and splenic cluster of differentiation 4-positive (CD4+) lymphocytes by PPE were significantly reversed by hUC-MSC administration in emphysematous mice (p < 0.05). An increasing neutrophil/lymphocyte ratio was reduced by hUC-MSCs at 3 × 106 and 107 cells/kg BW (p < 0.05). The higher levels of tumor necrosis factor (TNF)-α, keratinocyte chemoattractant (KC), and lactate dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF) were significantly decreased by hUC-MSC administration (p < 0.05). A decreasing p-Yap/Yap ratio in type II alveolar epithelial cells (AECII) of mice with PPE-induced emphysema was significantly increased by hUC-MSCs (p < 0.05). In conclusion, the administration of hUC-MSCs improved multiple pathophysiological features of mice with PPE-induced emphysema. The effectiveness of the treatment of pulmonary emphysema with hUC-MSCs provides an essential and significant foundation for future clinical studies of MSCs in COPD patients.


Assuntos
Enfisema , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Enfisema/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/terapia , Suínos , Cordão Umbilical
9.
Virol J ; 18(1): 74, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849568

RESUMO

BACKGROUND: Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocellular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utilizing SOCS proteins, chronic hepatitis virus infection may destroy the host's antiviral responses to achieve persistent infection. CONCLUSIONS: This review provides recent knowledge regarding the role of SOCS proteins during chronic hepatitis virus infection and provides some new ideas for the future treatment of chronic hepatitis.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite C , Neoplasias Hepáticas , Proteínas Supressoras da Sinalização de Citocina , Carcinoma Hepatocelular/virologia , Citocinas/metabolismo , Humanos , Neoplasias Hepáticas/virologia , Infecção Persistente , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
10.
Funct Integr Genomics ; 20(3): 307-320, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31654228

RESUMO

Riemerella anatipestifer is a gram-negative bacterium that leads to severe contagious septicemia in ducks, turkeys, chickens, and wild waterfowl. Here, a pan-genome with 32 R. anatipestifer genomes is re-established, and the mathematical model is calculated to evaluate the expansion of R. anatipestifer genomes, which were determined to be open. Average nucleotide identity (ANI) and phylogenetic analysis preliminarily clarify intraspecies variation and distance. Comparative genomic analysis of R. anatipestifer found that horizontal gene transfer events, which provide an expressway for the recruitment of novel functionalities and facilitate genetic diversity in microbial genomes, play a key role in the process of acquiring and transmitting antibiotic-resistance genes in R. anatipestifer. Furthermore, a new antibiotic-resistance gene cluster was identified in the same loci in 14 genomes. The uneven distribution of virulence factors was also confirmed by our results. Our study suggests that the ability to acquire foreign genes (such as antibiotic-resistance genes) increases the adaptability of R. anatipestifer, and the virulence genes with little mobility are highly conserved in R. anatipestifer.


Assuntos
Farmacorresistência Bacteriana , Flavobacteriaceae/genética , Genoma Bacteriano , Flavobacteriaceae/classificação , Transferência Genética Horizontal , Filogenia , Fatores de Virulência/genética
11.
Virol J ; 17(1): 68, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430029

RESUMO

BACKGROUND: Host shutoff refers to the widespread downregulation of host gene expression and has emerged as a key process that facilitates the reallocation of cellular resources for viral replication and evasion of host antiviral immune responses. MAIN BODY: The Herpesviridae family uses a number of proteins that are responsible for host shutoff by directly targeting messenger RNA (mRNA), including virion host shutoff (VHS) protein and the immediate-early regulatory protein ICP27 of herpes simplex virus types 1 (HSV-1) and the SOX (shutoff and exonuclease) protein and its homologs in Gammaherpesvirinae subfamilies, although these proteins are not homologous. In this review, we highlight evidence that host shutoff is promoted by the VHS, ICP27 and SOX-like proteins and that they also contribute to immune evasion. CONCLUSIONS: Further studies regarding the host shutoff proteins will not only contribute to provide new insights into the viral replication, expression and host immune evasion process, but also provide new molecular targets for the development of antiviral drugs and therapies.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Proteínas Imediatamente Precoces/genética , Evasão da Resposta Imune , Ribonucleases/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Expressão Gênica , Herpesvirus Humano 1 , Interações entre Hospedeiro e Microrganismos/genética , Proteínas Imediatamente Precoces/metabolismo , Ribonucleases/metabolismo , Células Vero , Proteínas Virais/metabolismo , Vírion/genética , Replicação Viral
12.
Virol J ; 17(1): 112, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703221

RESUMO

BACKGROUND: eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. MAIN BODY: In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. CONCLUSIONS: This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.


Assuntos
Fator de Iniciação 2 em Eucariotos/genética , Interações Hospedeiro-Patógeno/genética , Viroses/genética , Replicação Viral/genética , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Viral/genética , Proteínas Virais/genética
13.
Vet Res ; 51(1): 135, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176874

RESUMO

Duck enteritis virus (DEV) is a member of the Alphaherpesvirinae subfamily. The characteristics of some DEV genes have been reported. However, information regarding the DEV UL47 gene is limited. In this study, we identified the DEV UL47 gene encoding a late structural protein located in the nucleus of infected cells. We further found that two domains of DEV pUL47, amino acids (aa) 40 to 50 and 768 to 777, could function as nuclear localization sequence (NLS) to guide the nuclear localization of pUL47 and nuclear translocation of heterologous proteins, including enhanced green fluorescent protein (EGFP) and beta-galactosidase (ß-Gal). Moreover, pUL47 significantly inhibited polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced interferon beta (IFN-ß) production and downregulated interferon-stimulated gene (ISG) expression, such as Mx and oligoadenylate synthetase-like (OASL), by interacting with signal transducer and activator of transcription-1 (STAT1).


Assuntos
Patos , Interferon beta/fisiologia , Mardivirus/fisiologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Fator de Transcrição STAT1/fisiologia , Proteínas Estruturais Virais/genética , Animais , Núcleo Celular/virologia , Transdução de Sinais
14.
BMC Vet Res ; 16(1): 8, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915010

RESUMO

BACKGROUND: pUL21 is a conserved protein of Alphaherpesvirinae that performs multiple important functions. The C-terminus of pUL21 in other members of this subfamily has RNA-binding ability; this domain contributes to pseudorabies virus (PRV) retrograde axonal transport in vitro and in vivo and participates in newly replicated viral DNA packaging and intracellular virus transport. However, knowledge regarding duck enteritis virus (DEV) pUL21 is limited. RESULTS: We verified that DEV UL21 is a γ2 gene that encodes a structural protein. Moreover, we observed that pUL21 localized to the nucleus and cytoplasm. DEV pUL21 interacted with pUL16 and formed a complex in transfected human embryonic kidney (HEK) 293 T cells and DEV-infected duck embryo fibroblasts (DEFs). These results were further confirmed by CO-IP assays. CONCLUSIONS: The DEV UL21 gene is a late gene, and pUL21 localizes to the nucleus and cytoplasm. DEV UL21 is a virion component. In addition, pUL21 can interact with pUL16. These findings provide insight into the characteristics of UL21 and the interaction between pUL21 and its binding partner pUL16. Our study enhances the understanding of DEV pUL21.


Assuntos
Mardivirus/genética , Mardivirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Patos/virologia , Fibroblastos , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por Herpesviridae/veterinária , Humanos , Doenças das Aves Domésticas/virologia , Vírion , Replicação Viral
15.
Asia Pac J Clin Nutr ; 29(2): 322-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32674240

RESUMO

BACKGROUND AND OBJECTIVES: Previous study has reported phosphorus intake is associated prostate cancer (PCa), but the association between phosphorus intake and serum prostate specific antigen (PSA) levels hasn't been reported in non-history of PCa population. Therefore, we performed a secondary data analysis based on existing data from the public Nutrition Examination Survey (NHANES) (2003-2010) database. METHODS AND STUDY DESIGN: Totally 6403 participants were selected from NHANES (2003-2010) database. The interested independent and dependent variables were considered as dietary phosphorus intake and PSA level, respectively. Covariates included demographic data, dietary data, physical examination data, and comorbidities. Weighted linear regression and generalized additive models were used to addressing the linear and non-linear link of phosphorus intake to PSA level. RESULTS: Linear association between phosphorus intake and PSA was not detected [ß=0.016 (95% Confidence Interval (CI) -0.012, 0.045)]. But we found an existing nonlinearity. By the recursive algorithm, the inflection point was 1151 mg. On the left side of the inflection point, we did not find the correlation between dietary phosphorus intake (per 100 change) and PSA level [ß=-0.04 (95% CI -0.11, 0.02), p=0.2155], while dietary phosphorus intake (per 100 change) positively associated with PSA [ß=0.05 (95% CI 0.01, 0.09) p=0.0293] on the right side of inflection point. CONCLUSIONS: There is a non-linear correlation between dietary phosphorus intake and PSA. Dietary phosphorus intake was positively associated with increased PSA when dietary phosphorus intake is beyond 1151 mg after adjusting other covariates. Over 1151 mg per day dietary phosphorus intake may be the risk factor for PSA increasing.


Assuntos
Fósforo na Dieta , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/epidemiologia , Humanos , Masculino , Inquéritos Nutricionais , Neoplasias da Próstata/sangue , Neoplasias da Próstata/etiologia , Estados Unidos/epidemiologia
16.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160365

RESUMO

Galleria mellonella larvae have been used as a host model to study interactions between pathogens and hosts for several years. However, whether the model is useful to interrogate Riemerella anatipestifer infection biology remained unknown. This study aimed to exploit the potential of G. mellonella larvae and reveal their limitations as a host model for R. anatipestifer infection. G. mellonella larvae were shown to be effective for virulence evaluations of different R. anatipestifer strains. Furthermore, the virulent strain R. anatipestifer CH-1 had a stronger ability to proliferate than the attenuated strain R. anatipestifer ATCC 11845 in both G. mellonella larvae and ducklings. Unconventionally it was shown that G. mellonella larvae cannot be used to evaluate the efficacy of antimicrobials and their combinations. Additionally, it was shown that certain virulence factors, such as OmpA (B739_0861), B739_1208, B739_1343, and Wza (B739_1124), were specific only for ducklings, suggesting that G. mellonella larvae must be cautiously used to identify virulence factors of R. anatipestifer Evaluation of heme uptake-related virulence genes, such as tonB1 and tonB2, required preincubating the strains with hemoglobin before infection of G. mellonella larvae since R. anatipestifer cannot obtain a heme source from G. mellonella larvae. In conclusion, this study revealed the applicability and limitations of G. mellonella as a model with which to study the pathogen-host interaction, particularly in the context of R. anatipestifer infection.


Assuntos
Lepidópteros/microbiologia , Riemerella , Animais , Patos , Infecções por Flavobacteriaceae , Heme/metabolismo , Interações Hospedeiro-Patógeno , Larva/microbiologia , Riemerella/efeitos dos fármacos , Riemerella/crescimento & desenvolvimento
17.
BMC Genomics ; 20(1): 63, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658579

RESUMO

BACKGROUND: Pasteurella multocida (P. multocida) is a widespread opportunistic pathogen that infects human and various animals. Genomic Islands (GIs) are one of the most important mobile components that quickly help bacteria acquire large fragments of foreign genes. However, the effects of GIs on P. multocida are unknown in the evolution of bacterial populations. RESULTS: Ten avian-sourced P. multocida obtained through high-throughput sequencing together with 104 publicly available P. multocida genomes were used to analyse their population genetics, thus constructed a pan-genome containing 3948 protein-coding genes. Through the pan-genome, the open evolutionary pattern of P. multocida was revealed, and the functional components of 944 core genes, 2439 accessory genes and 565 unique genes were analysed. In addition, a total of 280 GIs were predicted in all strains. Combined with the pan-genome of P. multocida, the GIs accounted for 5.8% of the core genes in the pan-genome, mainly related to functional metabolic activities; the accessory genes accounted for 42.3%, mainly for the enrichment of adaptive genes; and the unique genes accounted for 35.4%, containing some defence mechanism-related genes. CONCLUSIONS: The effects of GIs on the population genetics of P. multocida evolution and adaptation to the environment are reflected by the proportion and function of the pan-genome acquired from GIs, and the large quantities of GI data will aid in additional population genetics studies.


Assuntos
Genoma Bacteriano/genética , Ilhas Genômicas/genética , Pasteurella multocida/genética , Simbiose/genética , Animais , Genes Bacterianos/genética , Genética Populacional , Genômica/métodos , Humanos , Infecções por Pasteurella/microbiologia , Pasteurella multocida/classificação , Pasteurella multocida/fisiologia , Filogenia , Especificidade da Espécie
18.
Environ Microbiol ; 21(8): 2836-2851, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31004458

RESUMO

Riemerella anatipestifer (RA) is a gram-negative bacterium that has a high potential to infect waterfowl. Although more and more genomes of RA have been generated comparaed to genomic analysis of RA still remains at the level of individual species. In this study, we analysed the pan-genome of 27 RA virulent isolates to reveal the intraspecies genomic diversity from various aspects. The multi-locus sequence typing (MLST) analysis suggests that the geographic origin of R. anatipestifer is Guangdong province, China. Results of pan-genome analysis revealed an open pan-genome for all 27 species with the sizes of 2967 genes. We identified 387 genes among 555 unique genes originated by horizontal gene transfer. Further studies showed 204 strain-specific HGT genes were predicted as virulent proteins. Screening the 1113 core genes in RA through subtractive genomic approach, 70 putative vaccine targets out of 125 non-cytoplasmic proteins have been predicted. Further analysis of these non A. platyrhynchos homologous proteins predicted that 56 essential proteins as drug target with more interaction partners were involved in unique metabolic pathways of RA. In conclusion, the present study indicated the essence and the diversity of RA and also provides useful information for identification of vaccine and drugs candidates in future.


Assuntos
Riemerella/genética , Animais , China , Variação Genética , Genoma Bacteriano , Genômica , Modelos Genéticos , Tipagem de Sequências Multilocus , Riemerella/patogenicidade , Virulência
19.
BMC Microbiol ; 19(1): 271, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795952

RESUMO

BACKGROUND: Riemerella anatipestifer is one of the most serious infectious disease-causing pathogens in the duck industry. Drug administration is an important method for prevention and treatment of infection in duck production, leading to widespread drug resistance in R. anatipestifer. METHODS: For a total of 162 isolates of R. anatipestifer, the MICs were determined for a quinolone antimicrobial agent, namely, nalidixic acid, and three fluoroquinolones, namely, ciprofloxacin, enrofloxacin and ofloxacin. The gyrA, parC, and parE gene fragments were amplified by PCR to identify the mutation sites in these strains. Site-directed mutants with mutations that were detected at a high frequency in vivo were constructed (hereafter referred to as site-directed in vivo mutants), and the MICs of these four drugs for these strains were determined. RESULTS: In total, 100, 97.8, 99.3 and 97.8% of the 137 R. anatipestifer strains isolated between 2013 and 2018 showed resistance to nalidixic acid, ciprofloxacin, enrofloxacin, and ofloxacin, respectively. The high-frequency mutation sites were detected in a total of 162 R. anatipestifer strains, such as Ser83Ile and Ser83Arg, which are two types of substitution mutations of amino acid 83 in GyrA; Val799Ala and Ile811Val in ParC; and Val357Ile, His358Tyr, and Arg541Lys in ParE. MIC analysis results for the site-directed in vivo mutants showed that the strains with only the Ser83Ile mutation in GyrA exhibited an 8-16-fold increase in MIC values, and all mutants showed resistance to ampicillin and ceftiofur. CONCLUSIONS: The resistance of R. anatipestifer to quinolone agents is a serious problem. Amino acid 83 in GyrA is the major target mutation site for the fluoroquinolone resistance mechanism of R. anatipestifer.


Assuntos
DNA Girase/genética , DNA Topoisomerase IV/genética , Infecções por Flavobacteriaceae/veterinária , Fluoroquinolonas/farmacologia , Riemerella/efeitos dos fármacos , Riemerella/genética , Animais , Antibacterianos/farmacologia , China , Farmacorresistência Bacteriana Múltipla , Patos/microbiologia , Fazendas , Infecções por Flavobacteriaceae/microbiologia , Testes de Sensibilidade Microbiana , Mutação , Doenças das Aves Domésticas/microbiologia , Prevalência , Riemerella/patogenicidade
20.
Virol J ; 16(1): 144, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771604

RESUMO

BACKGROUND: MicroRNAs (miRNAs) is increasingly recognized as an important element in regulating virus-host interactions. Our previous results showed that cellular miR-30a-5p was significantly downregulated after duck enteritis virus (DEV) infection cell. However, whehter or not the miR-30a-5p is involved in DEV infection has not been known. METHODS: Quantitative reverse-transcription PCR (qRT-PCR) was used to measure the expression levels of miRNAs(miR-30a-5p) and Beclin-1 mRNA. The miR-30a-5p - Beclin-1 target interactions were determined by Dual luciferase reporter assay (DLRA). Western blotting was utilized to analyze Beclin-1-mediated duck embryo fibroblast (DEF) cells autophagy activity. DEV titers were estimated by the median tissue culture infective dose (TCID50). RESULTS: The miR-30a-5p was significantly downregulated and the Beclin-1 mRNA was significantly upregulated in DEV-infected DEF cells. DLRA confirmed that miR-30a-5p directly targeted the 3'- UTR of the Beclin-1 gene. Overexpression of miR-30a-5p significantly reduced the expression level of Beclin-1protein (p < 0.05), leading to the decrease of Beclin-1-mediated autophagy activity, which ultimately suppressed DEV replication (P < 0.05). Whereas transfection of miR-30a-5p inhibitor increased Beclin-1-mediated autophagy and triggered DEV replication during the whole process of DEV infection (P < 0.01). CONCLUSIONS: This study shows that miR-30a-5p can inhibit DEV replication through reducing autophagy by targeting Beclin-1. These findings suggest a new insight into virus-host interaction during DEV infection and provide a potential new antiviral therapeutic strategy against DEV infection.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , Mardivirus/crescimento & desenvolvimento , MicroRNAs/metabolismo , Replicação Viral , Animais , Western Blotting , Células Cultivadas , Patos , Fibroblastos/virologia , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA