Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Sci ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061399

RESUMO

According to the World Health Organization (WHO), major depressive disorder (MDD) is the fourth leading cause of disability worldwide and the second most common disease after cardiovascular events. Approximately 280 million people live with MDD, with incidence varying by age and gender (female to male ratio of approximately 2:1). Although a variety of antidepressants are available for the different forms of MDD, there is still a high degree of individual variability in response and tolerability. Given the complexity and clinical heterogeneity of these disorders, a shift from "canonical treatment" to personalized medicine with improved patient stratification is needed. OPADE is a non-profit study that researches biomarkers in MDD to tailor personalized drug treatments, integrating genetics, epigenetics, microbiome, immune response, and clinical data for analysis. A total of 350 patients between 14 and 50 years will be recruited in 6 Countries (Italy, Colombia, Spain, The Netherlands, Turkey) for 24 months. Real-time electroencephalogram (EEG) and patient cognitive assessment will be correlated with biological sample analysis. A patient empowerment tool will be deployed to ensure patient commitment and to translate patient stories into data. The resulting data will be used to train the artificial intelligence/machine learning (AI/ML) predictive tool.

2.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576030

RESUMO

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Assuntos
Epigenômica , Neoplasias , Humanos , Aprendizado de Máquina não Supervisionado , Computação em Nuvem , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA