Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(8): e2104899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34897997

RESUMO

Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-ß) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-ß cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Transplante das Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/terapia , Cães , Fibrose , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos SCID , Ratos
2.
Proc Natl Acad Sci U S A ; 115(2): E263-E272, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279393

RESUMO

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement. Here, we report a simple cell encapsulation design that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. The device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (1-mo) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance. We demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for 3 mo as well as in immunodeficient SCID-Beige mice using human islets for 4 mo. We further showed, as a proof of concept, the scalability and retrievability in dogs. After 1 mo of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure. This encapsulation device may contribute to a cellular therapy for T1D because of its retrievability and scale-up potential.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/fisiologia , Alginatos , Animais , Diabetes Mellitus Experimental/terapia , Dimetilformamida , Cães , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Hidrogéis , Camundongos , Camundongos SCID , Polimetil Metacrilato , Ratos
3.
Bioinformatics ; 34(16): 2862-2864, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648573

RESUMO

Motivation: Toehold switches are a class of RNAs with a hairpin loop that can be unfolded upon binding a trigger RNA, thereby exposing a ribosome binding site (RBS) and permitting translation of the reporter protein. They have been shown very useful in detecting a variety of targets including RNAs from Zika and Ebola viruses. The base complementation between the toehold switch and the trigger RNA also makes it sensitive to sequence variations. Design of toehold switches involves a series of considerations related to their sequence properties, structures and specificities. Results: Here we present the first comprehensive web tool for designing toehold switches. We also propose a score for predicting the efficacy of designed toehold switches based on properties learned from ∼180 experimentally tested switches. Availability and implementation: The toehold switch web tool is available at https://yiplab.cse.cuhk.edu.hk/toehold/.


Assuntos
Design de Software , Sítios de Ligação , Conformação de Ácido Nucleico , RNA/química , Ribossomos/metabolismo
4.
Langmuir ; 35(5): 1927-1934, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30441901

RESUMO

Reducing biofouling while increasing lubricity of inserted medical catheters is highly desirable to improve their comfort, safety, and long-term use. We report here a simple method to create thin (∼30 µm) conformal lubricating hydrogel coatings on catheters. The key to this method is a three-step process including shape-forming, gradient cross-linking, and swell-peeling (we label this method as SGS). First, we took advantage of the fast gelation of agar to form a hydrogel layer conformal to catheters; then, we performed a surface-bound UV cross-linking of acrylamide mixed in agar in open air, purposely allowing gradual oxygen inhibition of free radicals to generate a gradient of cross-linking density across the hydrogel layer; and finally, we caused the hydrogel to swell to let the non-cross-linked/loosely attached hydrogel fall off, leaving behind a surface-bound, thin, and mostly uniform hydrogel coating. This method also allowed easy incorporation of different polymerizable monomers to obtain multifunctionality. For example, incorporating an antifouling, zwitterionic moiety sulfobetaine in the hydrogel reduced both in vitro protein adsorption and in vivo foreign-body response in mice. The addition of a biocidal N-halamine monomer to the hydrogel coating deactivated both Staphylococcus aureus ( S. aureus) and Escherichia coli ( E. coli) O157:H7 within 30 min of contact and reduced biofilm formation by 90% compared to those of uncoated commercial catheters when challenged with S. aureus for 3 days. The lubricating, antibiofouling hydrogel coating may bring clinical benefits in the use of urinary and venous catheters as well as other types of medical devices.


Assuntos
Incrustação Biológica/prevenção & controle , Catéteres , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Betaína/análogos & derivados , Betaína/síntese química , Materiais Revestidos Biocompatíveis/síntese química , Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Hidrogéis/síntese química , Camundongos Endogâmicos C57BL , Staphylococcus aureus/efeitos dos fármacos
5.
Nat Mater ; 16(6): 671-680, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28319612

RESUMO

Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/metabolismo , Próteses e Implantes/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Reação a Corpo Estranho/imunologia , Camundongos , Primatas
7.
Nat Mater ; 14(6): 643-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25985456

RESUMO

The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.


Assuntos
Reação a Corpo Estranho/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Primatas
8.
Assist Technol ; 26(2): 71-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25112051

RESUMO

Myoelectric pattern recognition systems can translate muscle contractions into prosthesis commands; however, the lack of long-term robustness of such systems has resulted in low acceptability. Specifically, socket misalignment may cause disturbances related to electrodes shifting from their original recording location, which affects the myoelectric signals (MES) and produce degradation of the classification performance. In this work, the impact of such disturbances on wavelet features extracted from MES was evaluated in terms of classification accuracy. Additionally, two principal component analysis frameworks were studied to reduce the wavelet feature set. MES from seven able-body subjects and one subject with congenital transradial limb loss were studied. The electrode shifts were artificially introduced by recording signals during six sessions for each subject. A small drop in classification accuracy from 93.8% (no disturbances) to 88.3% (with disturbances) indicated that wavelet features were able to adapt to the variability introduced by electrode shift disturbances. The classification performance of the reduced feature set was significantly lower than the performance of the full wavelet feature set. The results observed in this study suggest that the effect of electrode shift disturbances on the MES can potentially be mitigated by using wavelet features embedded in a pattern recognition system.


Assuntos
Eletrodos , Eletromiografia , Reconhecimento Automatizado de Padrão , Análise de Ondaletas , Adulto , Braço , Membros Artificiais , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Análise de Componente Principal , Adulto Jovem
9.
Network ; 23(1-2): 59-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22571251

RESUMO

The coupled oscillator model has previously been used for the simulation of neuronal activities in in vitro rat hippocampal slice seizure data and the evaluation of seizure suppression algorithms. Each model unit can be described as either an oscillator which can generate action potential spike trains without inputs, or a threshold-based unit. With the change of only one parameter, each unit can either be an oscillator or a threshold-based spiking unit. This would eliminate the need of a new set of equations for each type of unit. Previous analysis has suggested that long kernel duration and imbalance of inhibitory feedback can cause the system to intermittently transition into and out of ictal activities. The state transitions of seizure-like events were investigated here; specifically, how the system excitability may change when the system underwent transitions in the preictal and postictal processes. Analysis showed that the area of the excitation kernel is positively correlated with the mean firing rate of ictal activity. The kernel duration is also correlated to the amount of ictal activity. The transition into ictal involved the escape from the saddle point foci in the state space trajectory identified using Newton's method.


Assuntos
Redes Neurais de Computação , Convulsões/fisiopatologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Simulação por Computador , Progressão da Doença , Fenômenos Eletrofisiológicos , Epilepsia/fisiopatologia , Retroalimentação Fisiológica/fisiologia , Hipocampo/fisiologia , Técnicas In Vitro , Deficiência de Magnésio/complicações , Deficiência de Magnésio/fisiopatologia , Masculino , Modelos Estatísticos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Convulsões/etiologia
10.
Assist Technol ; 24(3): 196-208, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23033736

RESUMO

This paper presents a control strategy that compensates for the nonlinearity in the inexpensive sensors and hardware of a cost effective prosthetic hand. The control strategy uses neural network-based force control and sensory feedback to detect disturbance induced by slippage. The neural network approach is chosen over other nonlinear models because it is easy to implement and it offered the additional advantage of having its parameters easily adjusted over the life span of the device. The proposed strategy was evaluated on a functional multi-digit underactuated prosthetic hand. The initial and incremental forces exerted from each finger were adjusted to balance the amount of disturbance and the deformation of the objects. Experiments were conducted to test the performance of the protocol in situations encountered in activities of daily living. The displacement of each object under three grasping configurations was measured as a performance criterion while the object's mass was changed. The results showed that with the adjusted parameters for each grasping configuration, the control strategy was able to detect the dynamic changes in mass of the object and was also able to successfully adjust the grasping force before the object drops from the hand.


Assuntos
Membros Artificiais , Mãos , Redes Neurais de Computação , Desenho de Prótese , Membros Artificiais/economia , Análise Custo-Benefício , Eletrônica Médica , Força da Mão , Humanos
11.
Sci Adv ; 8(29): eabn0071, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867788

RESUMO

Islet transplantation has been established as a viable treatment modality for type 1 diabetes. However, the side effects of the systemic immunosuppression required for patients often outweigh its benefits. Here, we engineer programmed death ligand-1 and cytotoxic T lymphocyte antigen 4 immunoglobulin fusion protein-modified mesenchymal stromal cells (MSCs) as accessory cells for islet cotransplantation. The engineered MSCs (eMSCs) improved the outcome of both syngeneic and allogeneic islet transplantation in diabetic mice and resulted in allograft survival for up to 100 days without any systemic immunosuppression. Immunophenotyping revealed reduced infiltration of CD4+ or CD8+ T effector cells and increased infiltration of T regulatory cells within the allografts cotransplanted with eMSCs compared to controls. The results suggest that the eMSCs can induce local immunomodulation and may be applicable in clinical islet transplantation to reduce or minimize the need of systemic immunosuppression and ameliorate its negative impact.


Assuntos
Diabetes Mellitus Experimental , Transplante de Células-Tronco Hematopoéticas , Transplante das Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/terapia , Imunomodulação , Terapia de Imunossupressão , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos BALB C
12.
Nat Commun ; 13(1): 6031, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229614

RESUMO

The delivery of encapsulated islets or stem cell-derived insulin-producing cells (i.e., bioartificial pancreas devices) may achieve a functional cure for type 1 diabetes, but their efficacy is limited by mass transport constraints. Modeling such constraints is thus desirable, but previous efforts invoke simplifications which limit the utility of their insights. Herein, we present a computational platform for investigating the therapeutic capacity of generic and user-programmable bioartificial pancreas devices, which accounts for highly influential stochastic properties including the size distribution and random localization of the cells. We first apply the platform in a study which finds that endogenous islet size distribution variance significantly influences device potency. Then we pursue optimizations, determining ideal device structures and estimates of the curative cell dose. Finally, we propose a new, device-specific islet equivalence conversion table, and develop a surrogate machine learning model, hosted on a web application, to rapidly produce these coefficients for user-defined devices.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Pâncreas
13.
Biomed Eng Online ; 10: 29, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21504608

RESUMO

BACKGROUND: Epilepsy is a common neurological disorder characterized by recurrent electrophysiological activities, known as seizures. Without the appropriate detection strategies, these seizure episodes can dramatically affect the quality of life for those afflicted. The rationale of this study is to develop an unsupervised algorithm for the detection of seizure states so that it may be implemented along with potential intervention strategies. METHODS: Hidden Markov model (HMM) was developed to interpret the state transitions of the in vitro rat hippocampal slice local field potentials (LFPs) during seizure episodes. It can be used to estimate the probability of state transitions and the corresponding characteristics of each state. Wavelet features were clustered and used to differentiate the electrophysiological characteristics at each corresponding HMM states. Using unsupervised training method, the HMM and the clustering parameters were obtained simultaneously. The HMM states were then assigned to the electrophysiological data using expert guided technique. Minimum redundancy maximum relevance (mRMR) analysis and Akaike Information Criterion (AICc) were applied to reduce the effect of over-fitting. The sensitivity, specificity and optimality index of chronic seizure detection were compared for various HMM topologies. The ability of distinguishing early and late tonic firing patterns prior to chronic seizures were also evaluated. RESULTS: Significant improvement in state detection performance was achieved when additional wavelet coefficient rates of change information were used as features. The final HMM topology obtained using mRMR and AICc was able to detect non-ictal (interictal), early and late tonic firing, chronic seizures and postictal activities. A mean sensitivity of 95.7%, mean specificity of 98.9% and optimality index of 0.995 in the detection of chronic seizures was achieved. The detection of early and late tonic firing was validated with experimental intracellular electrical recordings of seizures. CONCLUSIONS: The HMM implementation of a seizure dynamics detector is an improvement over existing approaches using visual detection and complexity measures. The subjectivity involved in partitioning the observed data prior to training can be eliminated. It can also decipher the probabilities of seizure state transitions using the magnitude and rate of change wavelet information of the LFPs.


Assuntos
Doença Crônica , Cadeias de Markov , Convulsões/diagnóstico , Análise de Ondaletas , Algoritmos , Animais , Simulação por Computador , Hipocampo/fisiopatologia , Técnicas In Vitro , Ratos , Ratos Wistar , Sensibilidade e Especificidade
14.
Adv Mater ; 33(39): e2102852, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363254

RESUMO

Encapsulation of insulin-producing cells is a promising strategy for treatment of type 1 diabetes. However, engineering an encapsulation device that is both safe (i.e., no cell escape and no breakage) and functional (i.e., low foreign-body response (FBR) and high mass transfer) remains a challenge. Here, a family of zwitterionic polyurethanes (ZPU) with sulfobetaine groups in the polymer backbone is developed, which are fabricated into encapsulation devices with tunable nanoporous structures via electrospinning. The ZPU encapsulation device is hydrophilic and fouling-resistant, exhibits robust mechanical properties, and prevents cell escape while still allowing efficient mass transfer. The ZPU device also induces a much lower FBR or cellular overgrowth upon intraperitoneal implantation in C57BL/6 mice for up to 6 months compared to devices made of similar polyurethane without the zwitterionic modification. The therapeutic potential of the ZPU device is shown for islet encapsulation and diabetes correction in mice for ≈3 months is demonstrated. As a proof of concept, the scalability and retrievability of the ZPU device in pigs and dogs are further demonstrated. Collectively, these attributes make ZPU devices attractive candidates for cell encapsulation therapies.


Assuntos
Materiais Biocompatíveis/química , Ilhotas Pancreáticas/química , Nanoporos , Poliuretanos/química , Animais , Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus Experimental/terapia , Cães , Interações Hidrofóbicas e Hidrofílicas , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Suínos
15.
Adv Mater ; 32(43): e2001628, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945035

RESUMO

Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of "triple hydrogen bonding clusters" (THBCs) as side groups into the hydrogel matrix. The THBC through a unique "load sharing" effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.


Assuntos
Bandagens , Portadores de Fármacos/química , Hidrogéis/química , Adesividade , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 1/patologia , Desenho de Fármacos , Liberação Controlada de Fármacos , Humanos , Ligação de Hidrogênio , Neoplasias Hepáticas/patologia , Fenômenos Mecânicos , Camundongos
16.
Biomaterials ; 230: 119640, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791840

RESUMO

Zwitterionic hydrogels such as those based on polycarboxybetaine (PCB) or polysulfobetaine (PSB) have potential for various biomedical applications, due to their biocompatibility and low biofouling properties. However, the poor mechanical properties of zwitterionic hydrogels developed to date remain a challenge, severely limiting their practical uses. To improve the mechanical properties without compromising their zwitterionic feature or biocompatibility, we designed a new class of zwitterionic hydrogels by introducing triazole moieties into the hydrogel monomers that could form energy-dissipating π-π stacking. Compared to conventional zwitterionic hydrogels, the triazole-zwitterionic (TR-ZW) ones exhibited similarly excellent antifouling properties, but were much more mechanically robust with higher stretchability (250% tensile strain), better compression-resistance (89% compressive strain and 65% compression for at least 10 cycles without any crack) and better folding-resistance. In addition, upon subcutaneous implantation in mice, the TR-ZW hydrogels induced significantly lower foreign body responses (FBR) (i.e. less fibrosis and more blood vessel formation relative to a poly(2-hydroxyethyl methacrylate) hydrogel control). As an example of their potential applications, we showed the use of the TR-ZW hydrogels for islet encapsulation and transplantation and demonstrated diabetes correction up to ~1 month in mice in the convenient subcutaneous site.


Assuntos
Incrustação Biológica , Corpos Estranhos , Animais , Hidrogéis , Camundongos , Triazóis
17.
Adv Mater ; 31(52): e1905135, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709667

RESUMO

Cell replacement therapy is emerging as a promising treatment platform for many endocrine disorders and hormone deficiency diseases. The survival of cells within delivery devices is, however, often limited due to low oxygen levels in common transplantation sites. Additionally, replacing implanted devices at the end of the graft lifetime is often unfeasible and, where possible, generally requires invasive surgical procedures. Here, the design and testing of a modular transcutaneous biphasic (BP) cell delivery device that provides enhanced and unlimited oxygen supply by direct contact with the atmosphere is presented. Critically, the cell delivery unit is demountable from the fixed components of the device, allowing for surgery-free refilling of the therapeutic cells. Mass transfer studies show significantly improved performance of the BP device in comparison to subcutaneous controls. The device is also tested for islet encapsulation in an immunocompetent diabetes rodent model. Robust cell survival and diabetes correction is observed following a rat-to-mouse xenograft. Lastly, nonsurgical cell refilling is demonstrated in dogs. These studies show the feasibility of this novel device for cell replacement therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Membranas Artificiais , Animais , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Hidrocarbonetos/química , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Oxigênio/metabolismo , Polímeros/química , Politetrafluoretileno/química , Ratos , Ratos Sprague-Dawley , Titânio/química
18.
Nat Commun ; 10(1): 4602, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601796

RESUMO

The success of engineered cell or tissue implants is dependent on vascular regeneration to meet adequate metabolic requirements. However, development of a broadly applicable strategy for stable and functional vascularization has remained challenging. We report here highly organized and resilient microvascular meshes fabricated through a controllable anchored self-assembly method. The microvascular meshes are scalable to centimeters, almost free of defects and transferrable to diverse substrates, ready for transplantation. They promote formation of functional blood vessels, with a density as high as ~220 vessels mm-2, in the poorly vascularized subcutaneous space of SCID-Beige mice. We further demonstrate the feasibility of fabricating microvascular meshes from human induced pluripotent stem cell-derived endothelial cells, opening a way to engineer patient-specific microvasculature. As a proof-of-concept for type 1 diabetes treatment, we combine microvascular meshes and subcutaneously transplanted rat islets and achieve correction of chemically induced diabetes in SCID-Beige mice for 3 months.


Assuntos
Técnicas de Cultura de Células/instrumentação , Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Microvasos/crescimento & desenvolvimento , Animais , Bioengenharia , Técnicas de Cultura de Células/métodos , Diabetes Mellitus Experimental/complicações , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Transplante das Ilhotas Pancreáticas/instrumentação , Masculino , Camundongos SCID , Microvasos/citologia , Microvasos/fisiologia , Neovascularização Fisiológica , Ratos Sprague-Dawley
19.
Biomaterials ; 217: 119307, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271857

RESUMO

The physical microenvironment of tumor cells plays an important role in cancer initiation and progression. Here, we present evidence that confinement - a new physical parameter that is apart from matrix stiffness - can also induce malignant transformation in mammary epithelial cells. We discovered that MCF10A cells, a benign mammary cell line that forms growth-arrested polarized acini in Matrigel, transforms into cancer-like cells within the same Matrigel material following confinement in alginate shell hydrogel microcapsules. The confined cells exhibited a range of tumor-like behaviors, including uncontrolled cellular proliferation and invasion. Additionally, 4-6 weeks after transplantation into the mammary fad pads of immunocompromised mice, the confined cells formed large palpable masses that exhibited histological features similar to that of carcinomas. Taken together, our findings suggest that physical confinement represents a previously unrecognized mechanism for malignancy induction in mammary epithelial cells and also provide a new, microcapsule-based, high throughput model system for testing new breast cancer therapeutics.


Assuntos
Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Glândulas Mamárias Humanas/patologia , Células Acinares/patologia , Animais , Cápsulas , Carcinogênese/patologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Hidrogéis/química , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos SCID , Análise de Sequência de RNA , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Commun ; 10(1): 5262, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748525

RESUMO

Foreign body reaction (FBR) to implanted biomaterials and medical devices is common and can compromise the function of implants or cause complications. For example, in cell encapsulation, cellular overgrowth (CO) and fibrosis around the cellular constructs can reduce the mass transfer of oxygen, nutrients and metabolic wastes, undermining cell function and leading to transplant failure. Therefore, materials that mitigate FBR or CO will have broad applications in biomedicine. Here we report a group of zwitterionic, sulfobetaine (SB) and carboxybetaine (CB) modifications of alginates that reproducibly mitigate the CO of implanted alginate microcapsules in mice, dogs and pigs. Using the modified alginates (SB-alginates), we also demonstrate improved outcome of islet encapsulation in a chemically-induced diabetic mouse model. These zwitterion-modified alginates may contribute to the development of cell encapsulation therapies for type 1 diabetes and other hormone-deficient diseases.


Assuntos
Alginatos/química , Betaína/análogos & derivados , Encapsulamento de Células/métodos , Diabetes Mellitus Tipo 1/terapia , Reação a Corpo Estranho/prevenção & controle , Animais , Betaína/química , Ácido Carbônico , Proliferação de Células , Diabetes Mellitus Experimental , Cães , Fibrose , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA