Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500351

RESUMO

Pathological remodeling of the heart is a hallmark of chronic heart failure (HF) and these structural changes further perpetuate the disease. Cardiac fibroblasts are the critical cell type that is responsible for maintaining the structural integrity of the heart. Stress conditions, such as a myocardial infarction (MI), can activate quiescent fibroblasts into synthetic and contractile myofibroblasts. G protein-coupled receptor kinase 5 (GRK5) is an important mediator of cardiovascular homeostasis through dampening of GPCR signaling, and is expressed in the heart and up-regulated in human HF. Of note, GRK5 has been demonstrated to translocate to the nucleus in cardiomyocytes in a calcium-calmodulin (Ca2+-CAM)-dependent manner, promoting hypertrophic gene transcription through activation of nuclear factor of activated T cells (NFAT). Interestingly, NFAT is also involved in fibroblast activation. GRK5 is highly expressed and active in cardiac fibroblasts; however, its pathophysiological role in these crucial cardiac cells is unknown. We demonstrate using adult cardiac fibroblasts that genetic deletion of GRK5 inhibits angiotensin II (AngII)-mediated fibroblast activation. Fibroblast-specific deletion of GRK5 in mice led to decreased fibrosis and cardiac hypertrophy after chronic AngII infusion or after ischemic injury compared to nontransgenic littermate controls (NLCs). Mechanistically, we show that nuclear translocation of GRK5 is involved in fibroblast activation. These data demonstrate that GRK5 is a regulator of fibroblast activation in vitro and cardiac fibrosis in vivo. This adds to previously published data which demonstrate the potential beneficial effects of GRK5 inhibition in the context of cardiac disease.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Miocárdio/patologia , Angiotensina II , Animais , Animais Recém-Nascidos , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Transdiferenciação Celular , Fibrose , Camundongos Knockout , Modelos Biológicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miofibroblastos/patologia , Ratos
2.
Mol Cell ; 60(1): 47-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387735

RESUMO

Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens, resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex, however, the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca(2+)- and ROS-induced PTP opening using RNAi-based screening. Loss of SPG7 resulted in higher mitochondrial Ca(2+) retention, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca(2+) and ROS stress. Biochemical analyses revealed that the PTP is a heterooligomeric complex composed of VDAC, SPG7, and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca(2+)- and ROS-induced ΔΨm depolarization and cell death. This study identifies an ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.


Assuntos
Ciclofilinas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sítios de Ligação , Cálcio/metabolismo , Morte Celular , Ciclofilinas/química , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Metaloendopeptidases/química , Membranas Mitocondriais/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
3.
Physiol Rev ; 95(2): 377-404, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25834229

RESUMO

G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent ß-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Cardiopatias/enzimologia , Miocárdio/enzimologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Cardiopatias/fisiopatologia , Humanos
4.
J Mol Cell Cardiol ; 154: 137-153, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548241

RESUMO

G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (ßARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, ßARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, ßARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify ßARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and ßARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in ßARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male ßARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the ßARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.


Assuntos
Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Quinase 2 de Receptor Acoplado a Proteína G/química , Peptídeos/genética , Domínios e Motivos de Interação entre Proteínas , Animais , Biomarcadores , Cardiomegalia/diagnóstico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica , Camundongos , Camundongos Transgênicos , Peptídeos/metabolismo , Fenótipo , Ligação Proteica , Transdução de Sinais , Remodelação Ventricular
5.
Am J Physiol Heart Circ Physiol ; 320(4): H1276-H1289, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513081

RESUMO

Recent data supporting any benefit of stem cell therapy for ischemic heart disease have suggested paracrine-based mechanisms via extracellular vesicles (EVs) including exosomes. We have previously engineered cardiac-derived progenitor cells (CDCs) to express a peptide inhibitor, ßARKct, of G protein-coupled receptor kinase 2, leading to improvements in cell proliferation, survival, and metabolism. In this study, we tested whether ßARKct-CDC EVs would be efficacious when applied to stressed myocytes in vitro and in vivo. When isolated EVs from ßARKct-CDCs and control GFP-CDCs were added to cardiomyocytes in culture, they both protected against hypoxia-induced apoptosis. We tested whether these EVs could protect the mouse heart in vivo, following exposure either to myocardial infarction (MI) or acute catecholamine toxicity. Both types of EVs significantly protected against ischemic injury and improved cardiac function after MI compared with mice treated with EVs from mouse embryonic fibroblasts; however, ßARKct EVs treated mice did display some unique beneficial properties including significantly altered pro- and anti-inflammatory cytokines. Importantly, in a catecholamine toxicity model of heart failure (HF), myocardial injections of ßARKct-containing EVs were superior at preventing HF compared with control EVs, and this catecholamine toxicity protection was recapitulated in vitro. Therefore, introduction of the ßARKct into cellular EVs can have improved reparative properties in the heart especially against catecholamine damage, which is significant as sympathetic nervous system activity is increased in HF.NEW & NOTEWORTHY ßARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-ßARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, ßARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.


Assuntos
Vesículas Extracelulares/transplante , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Transplante de Células-Tronco , Animais , Apoptose , Hipóxia Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Comunicação Parácrina , Peptídeos/genética , Ratos , Proteínas Recombinantes/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Células-Tronco/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(5): E859-E868, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096338

RESUMO

Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.


Assuntos
Sinalização do Cálcio/fisiologia , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial/fisiologia , Contração Miocárdica/fisiologia , Animais , Linhagem Celular , Genes Reporter , Vetores Genéticos , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Masculino , Microscopia Confocal , Mitocôndrias Cardíacas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Transdução Genética
7.
Circ Res ; 117(12): 1001-12, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26515328

RESUMO

RATIONALE: G protein-coupled receptor kinases (GRKs) are dynamic regulators of cellular signaling. GRK5 is highly expressed within myocardium and is upregulated in heart failure. Although GRK5 is a critical regulator of cardiac G protein-coupled receptor signaling, recent data has uncovered noncanonical activity of GRK5 within nuclei that plays a key role in pathological hypertrophy. Targeted cardiac elevation of GRK5 in mice leads to exaggerated hypertrophy and early heart failure after transverse aortic constriction (TAC) because of GRK5 nuclear accumulation. OBJECTIVE: In this study, we investigated the role of GRK5 in physiological, swimming-induced hypertrophy (SIH). METHODS AND RESULTS: Cardiac-specific GRK5 transgenic mice and nontransgenic littermate control mice were subjected to a 21-day high-intensity swim protocol (or no swim sham controls). SIH and specific molecular and genetic indices of physiological hypertrophy were assessed, including nuclear localization of GRK5, and compared with TAC. Unlike after TAC, swim-trained transgenic GRK5 and nontransgenic littermate control mice exhibited similar increases in cardiac growth. Mechanistically, SIH did not lead to GRK5 nuclear accumulation, which was confirmed in vitro as insulin-like growth factor-1, a known mediator of physiological hypertrophy, was unable to induce GRK5 nuclear translocation in myocytes. We found specific patterns of altered gene expression between TAC and SIH with GRK5 overexpression. Further, SIH in post-TAC transgenic GRK5 mice was able to preserve cardiac function. CONCLUSIONS: These data suggest that although nuclear-localized GRK5 is a pathological mediator after stress, this noncanonical nuclear activity of GRK5 is not induced during physiological hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Quinase 5 de Receptor Acoplado a Proteína G/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Células Cultivadas , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Ratos
8.
Circ Res ; 115(12): 976-85, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25332207

RESUMO

RATIONALE: G protein-coupled receptor kinases (GRKs) acting in the cardiomyocyte regulate important signaling events that control cardiac function. Both GRK2 and GRK5, the predominant GRKs expressed in the heart, have been shown to be upregulated in failing human myocardium. Although the canonical role of GRKs is to desensitize G protein-coupled receptors via phosphorylation, it has been demonstrated that GRK5, unlike GRK2, can reside in the nucleus of myocytes and exert G protein-coupled receptor-independent effects that promote maladaptive cardiac hypertrophy and heart failure. OBJECTIVE: To explore novel mechanisms by which GRK5 acting in the nucleus of cardiomyocytes participates in pathological cardiac hypertrophy. METHODS AND RESULTS: In this study, we have found that GRK5-mediated pathological cardiac hypertrophy involves the activation of the nuclear factor of activated T cells (NFAT) because GRK5 causes enhancement of NFAT-mediated hypertrophic gene transcription. Transgenic mice with cardiomyocyte-specific GRK5 overexpression activate an NFAT-reporter in mice basally and after hypertrophic stimulation, including transverse aortic constriction and phenylephrine treatment. Complimentary to this, GRK5 null mice exhibit less NFAT transcriptional activity after transverse aortic constriction. Furthermore, the loss of NFATc3 expression in the heart protected GRK5 overexpressing transgenic mice from the exaggerated hypertrophy and early progression to heart failure seen after transverse aortic constriction. Molecular studies suggest that GRK5 acts in concert with NFAT to increase hypertrophic gene transcription in the nucleus via GRK5's ability to bind DNA directly without a phosphorylation event. CONCLUSIONS: GRK5, acting in a kinase independent manner, is a facilitator of NFAT activity and part of a DNA-binding complex responsible for pathological hypertrophic gene transcription.


Assuntos
Cardiomegalia/enzimologia , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Miócitos Cardíacos/enzimologia , Fatores de Transcrição NFATC/metabolismo , Animais , Sítios de Ligação , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Núcleo Celular/enzimologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Quinase 5 de Receptor Acoplado a Proteína G/genética , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , Ratos , Fatores de Tempo , Transcrição Gênica , Transfecção
9.
J Mol Cell Cardiol ; 89(Pt B): 360-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26506135

RESUMO

The G protein-coupled receptor kinase-2 (GRK2) is upregulated in the injured heart and contributes to heart failure pathogenesis. GRK2 was recently shown to associate with mitochondria but its functional impact in myocytes due to this localization is unclear. This study was undertaken to determine the effect of elevated GRK2 on mitochondrial respiration in cardiomyocytes. Sub-fractionation of purified cardiac mitochondria revealed that basally GRK2 is found in multiple compartments. Overexpression of GRK2 in mouse cardiomyocytes resulted in an increased amount of mitochondrial-based superoxide. Inhibition of GRK2 increased oxygen consumption rates and ATP production. Moreover, fatty acid oxidation was found to be significantly impaired when GRK2 was elevated and was dependent on the catalytic activity and mitochondrial localization of this kinase. Our study shows that independent of cardiac injury, GRK2 is localized in the mitochondria and its kinase activity negatively impacts the function of this organelle by increasing superoxide levels and altering substrate utilization for energy production.


Assuntos
Ácidos Graxos/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio , Superóxidos/metabolismo , Animais , Respiração Celular , Camundongos Transgênicos , Estresse Fisiológico
10.
Circ Res ; 112(8): 1121-34, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23467820

RESUMO

RATIONALE: G protein-coupled receptor kinase 2 (GRK2) is abundantly expressed in the heart, and its expression and activity are increased in injured or stressed myocardium. This upregulation has been shown to be pathological. GRK2 can promote cell death in ischemic myocytes, and its inhibition by a peptide comprising the last 194 amino acids of GRK2 (known as carboxyl-terminus of ß-adrenergic receptor kinase [bARKct]) is cardioprotective. OBJECTIVE: The aim of this study was to elucidate the signaling mechanism that accounts for the prodeath signaling seen in the presence of elevated GRK2 and the cardioprotection afforded by the carboxyl-terminus of ß-adrenergic receptor kinase. METHODS AND RESULTS: Using in vivo mouse models of ischemic injury and also cultured myocytes, we found that GRK2 localizes to mitochondria, providing novel insight into GRK2-dependent pathophysiological signaling mechanisms. Mitochondrial localization of GRK2 in cardiomyocytes was enhanced after ischemic and oxidative stress, events that induced prodeath signaling. Localization of GRK2 to mitochondria was dependent on phosphorylation at residue Ser670 within its extreme carboxyl-terminus by extracellular signal-regulated kinases, resulting in enhanced GRK2 binding to heat shock protein 90, which chaperoned GRK2 to mitochondria. Mechanistic studies in vivo and in vitro showed that extracellular signal-regulated kinase regulation of the C-tail of GRK2 was an absolute requirement for stress-induced, mitochondrial-dependent prodeath signaling, and blocking this led to cardioprotection. Elevated mitochondrial GRK2 also caused increased Ca(2+)-induced opening of the mitochondrial permeability transition pore, a key step in cellular injury. CONCLUSIONS: We identify GRK2 as a prodeath kinase in the heart, acting in a novel manner through mitochondrial localization via extracellular signal-regulated kinase regulation.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Bovinos , Células Cultivadas , Quinase 2 de Receptor Acoplado a Proteína G/biossíntese , Quinase 2 de Receptor Acoplado a Proteína G/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/biossíntese , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Ratos , Transdução de Sinais/fisiologia
11.
J Mol Cell Cardiol ; 67: 86-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361238

RESUMO

cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38ß. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.


Assuntos
Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Interferência de RNA , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
12.
Circ Res ; 110(2): 265-74, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22179058

RESUMO

RATIONALE: Phosphorylation of ß(2)-adrenergic receptor (ß(2)AR) by a family of serine/threonine kinases known as G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) is a critical determinant of cardiac function. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is a well-established causal factor of heart failure, but the underlying mechanism is poorly understood. OBJECTIVE: We sought to determine the relative contribution of PKA- and GRK-mediated phosphorylation of ß(2)AR to the receptor coupling to G(i) signaling that attenuates cardiac reserve and contributes to the pathogenesis of heart failure in response to pressure overload. METHODS AND RESULTS: Overexpression of GRK2 led to a G(i)-dependent decrease of contractile response to ßAR stimulation in cultured mouse cardiomyocytes and in vivo. Importantly, cardiac-specific transgenic overexpression of a mutant ß(2)AR lacking PKA phosphorylation sites (PKA-TG) but not the wild-type ß(2)AR (WT-TG) or a mutant ß(2)AR lacking GRK sites (GRK-TG) led to exaggerated cardiac response to pressure overload, as manifested by markedly exacerbated cardiac maladaptive remodeling and failure and early mortality. Furthermore, inhibition of G(i) signaling with pertussis toxin restores cardiac function in heart failure associated with increased ß(2)AR to G(i) coupling induced by removing PKA phosphorylation of the receptor and in GRK2 transgenic mice, indicating that enhanced phosphorylation of ß(2)AR by GRK and resultant increase in G(i)-biased ß(2)AR signaling play an important role in the development of heart failure. CONCLUSIONS: Our data show that enhanced ß(2)AR phosphorylation by GRK, in addition to PKA, leads the receptor to G(i)-biased signaling, which, in turn, contributes to the pathogenesis of heart failure, marking G(i)-biased ß(2)AR signaling as a primary event linking upregulation of GRK to cardiac maladaptive remodeling, failure and cardiodepression.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Toxina Pertussis/farmacologia , Fosforilação , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Regulação para Cima , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular
13.
Circulation ; 123(18): 1953-62, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518983

RESUMO

BACKGROUND: Alterations in cardiac energy metabolism downstream of neurohormonal stimulation play a crucial role in the pathogenesis of heart failure. The chronic adrenergic stimulation that accompanies heart failure is a signaling abnormality that leads to the upregulation of G protein-coupled receptor kinase 2 (GRK2), which is pathological in the myocyte during disease progression in part owing to uncoupling of the ß-adrenergic receptor system. In this study, we explored the possibility that enhanced GRK2 expression and activity, as seen during heart failure, can negatively affect cardiac metabolism as part of its pathogenic profile. METHODS AND RESULTS: Positron emission tomography studies revealed in transgenic mice that cardiac-specific overexpression of GRK2 negatively affected cardiac metabolism by inhibiting glucose uptake and desensitization of insulin signaling, which increases after ischemic injury and precedes heart failure development. Mechanistically, GRK2 interacts with and directly phosphorylates insulin receptor substrate-1 in cardiomyocytes, causing insulin-dependent negative signaling feedback, including inhibition of membrane translocation of the glucose transporter GLUT4. This identifies insulin receptor substrate-1 as a novel nonreceptor target for GRK2 and represents a new pathological mechanism for this kinase in the failing heart. Importantly, inhibition of GRK2 activity prevents postischemic defects in myocardial insulin signaling and improves cardiac metabolism via normalized glucose uptake, which appears to participate in GRK2-targeted prevention of heart failure. CONCLUSIONS: Our data provide novel insights into how GRK2 is pathological in the injured heart. Moreover, it appears to be a critical mechanistic link within neurohormonal crosstalk governing cardiac contractile signaling/function through ß-adrenergic receptors and metabolism through the insulin receptor.


Assuntos
Glicemia/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Resistência à Insulina/genética , Isquemia Miocárdica/metabolismo , Animais , Metabolismo Energético/fisiologia , Terapia Genética/métodos , Transportador de Glucose Tipo 4/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/terapia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação/fisiologia , Tomografia por Emissão de Pósitrons , Transdução de Sinais/fisiologia
14.
Circ Res ; 107(9): 1140-9, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20814022

RESUMO

RATIONALE: Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function. OBJECTIVE: A loss of cardiac GRK2 activity is known to arrest progression of heart failure (HF), at least in part by normalization of cardiac ß-adrenergic receptor (ßAR) signaling. Chronic HF studies have been performed with GRK2 knockout mice, as well as expression of the ßARKct, a peptide inhibitor of GRK2 activity. This study was conducted to examine the role of GRK2 and its activity during acute myocardial ischemic injury using an I/R model. METHODS AND RESULTS: We demonstrate, using cardiac-specific GRK2 and ßARKct-expressing transgenic mice, a deleterious effect of GRK2 on in vivo myocardial I/R injury with ßARKct imparting cardioprotection. Post-I/R infarct size was greater in GRK2-overexpressing mice (45.0±2.8% versus 31.3±2.3% in controls) and significantly smaller in ßARKct mice (16.8±1.3%, P<0.05). Importantly, in vivo apoptosis was found to be consistent with these reciprocal effects on post-I/R myocardial injury when levels of GRK2 activity were altered. Moreover, these results were reflected by higher Akt activation and induction of NO production via ßARKct, and these antiapoptotic/survival effects could be recapitulated in vitro. Interestingly, selective antagonism of ß(2)ARs abolished ßARKct-mediated cardioprotection, suggesting that enhanced GRK2 activity on this GPCR is deleterious to cardiac myocyte survival. CONCLUSION: The novel effect of reducing acute ischemic myocardial injury via increased Akt activity and NO production adds significantly to the therapeutic potential of GRK2 inhibition with the ßARKct not only in chronic HF but also potentially in acute ischemic injury conditions.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Células Cultivadas , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Camundongos , Camundongos Transgênicos , Ratos
15.
Circ Res ; 107(12): 1445-53, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20966393

RESUMO

RATIONALE: coronary artery ligation to induce myocardial infarction (MI) in mice is typically performed by an invasive and time-consuming approach that requires ventilation and chest opening (classic method), often resulting in extensive tissue damage and high mortality. We developed a novel and rapid surgical method to induce MI that does not require ventilation. OBJECTIVE: the purpose of this study was to develop and comprehensively describe this method and directly compare it to the classic method. METHODS AND RESULTS: male C57/B6 mice were grouped into 4 groups: new method MI (MI-N) or sham (S-N) and classic method MI (MI-C) or sham (S-C). In the new method, heart was manually exposed without intubation through a small incision and MI was induced. In the classic method, MI was induced through a ventilated thoracotomy. Similar groups were used in an ischemia/reperfusion injury model. This novel MI procedure is rapid, with an average procedure time of 1.22 ± 0.05 minutes, whereas the classic method requires 23.2 ± 0.6 minutes per procedure. Surgical mortality was 3% in MI-N and 15.9% in MI-C. The rate of arrhythmia was significantly lower in MI-N. The postsurgical levels of tumor necrosis factor-α and myeloperoxidase were lower in new method, indicating less inflammation. Overall, 28-day post-MI survival rate was 68% with MI-N and 48% with MI-C. Importantly, there was no difference in infarct size or post-MI cardiac function between the methods. CONCLUSIONS: this new rapid method of MI in mice represents a more efficient and less damaging model of myocardial ischemic injury compared with the classic method.


Assuntos
Vasos Coronários/cirurgia , Modelos Animais de Doenças , Infarto do Miocárdio/etiologia , Projetos de Pesquisa/normas , Animais , Ligadura/efeitos adversos , Ligadura/métodos , Masculino , Métodos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
16.
Blood Adv ; 6(15): 4524-4536, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793439

RESUMO

The critical role of G protein-coupled receptor kinase 2 (GRK2) in regulating cardiac function has been well documented for >3 decades. Targeting GRK2 has therefore been extensively studied as a novel approach to treating cardiovascular disease. However, little is known about its role in hemostasis and thrombosis. We provide here the first evidence that GRK2 limits platelet activation and regulates the hemostatic response to injury. Deletion of GRK2 in mouse platelets causes increased platelet accumulation after laser-induced injury in the cremaster muscle arterioles, shortens tail bleeding time, and enhances thrombosis in adenosine 5'-diphosphate (ADP)-induced pulmonary thromboembolism and in FeCl3-induced carotid injury. GRK2-/- platelets have increased integrin activation, P-selectin exposure, and platelet aggregation in response to ADP stimulation. Furthermore, GRK2-/- platelets retain the ability to aggregate in response to ADP restimulation, indicating that GRK2 contributes to ADP receptor desensitization. Underlying these changes in GRK2-/- platelets is an increase in Ca2+ mobilization, RAS-related protein 1 activation, and Akt phosphorylation stimulated by ADP, as well as an attenuated rise of cyclic adenosine monophosphate levels in response to ADP in the presence of prostaglandin I2. P2Y12 antagonist treatment eliminates the phenotypic difference in platelet accumulation between wild-type and GRK2-/- mice at the site of injury. Pharmacologic inhibition of GRK2 activity in human platelets increases platelet activation in response to ADP. Finally, we show that GRK2 binds to endogenous Gßγ subunits during platelet activation. Collectively, these results show that GRK2 regulates ADP signaling via P2Y1 and P2Y12, interacts with Gßγ, and functions as a signaling hub in platelets for modulating the hemostatic response to injury.


Assuntos
Hemostáticos , Trombose , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/metabolismo , Humanos , Camundongos , Agregação Plaquetária , Trombose/metabolismo
17.
Proc Natl Acad Sci U S A ; 105(34): 12457-62, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18711143

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) are critical regulators of cellular signaling and function. In cardiomyocytes, GRK2 and GRK5 are two GRKs important for myocardial regulation, and both have been shown to be up-regulated in the dysfunctional heart. We report that increased levels and activity of GRK5 in failing myocardium may have unique significance due to its nuclear localization, a property not shared by GRK2. We find that transgenic mice with elevated cardiac GRK5 levels have exaggerated hypertrophy and early heart failure compared with control mice after pressure overload. This pathology is not present in cardiac GRK2-overexpressing mice or in mice with overexpression of a mutant GRK5 that is excluded from the nucleus. Nuclear accumulation of GRK5 is enhanced in myocytes after aortic banding in vivo and in vitro in myocytes after increased G alpha q activity, the trigger for pressure-overload hypertrophy. GRK5 enhances activation of MEF2 in concert with Gq signals, demonstrating that nuclear localized GRK5 regulates gene transcription via a pathway critically linked to myocardial hypertrophy. Mechanistically, we show that this is due to GRK5 acting, in a non-GPCR manner, as a class II histone deacetylase (HDAC) kinase because it can associate with and phosphorylate the myocyte enhancer factor-2 repressor, HDAC5. Moreover, significant HDAC activity can be found with GRK5 in the heart. Our data show that GRK5 is a nuclear HDAC kinase that plays a key role in maladaptive cardiac hypertrophy apparently independent of any action directly on GPCRs.


Assuntos
Núcleo Celular/enzimologia , Quinase 5 de Receptor Acoplado a Proteína G/fisiologia , Miócitos Cardíacos/enzimologia , Animais , Quinase 5 de Receptor Acoplado a Proteína G/análise , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/etiologia , Histona Desacetilases/metabolismo , Hipertrofia/enzimologia , Hipertrofia/etiologia , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/ultraestrutura , Fatores de Regulação Miogênica/metabolismo , Regulação para Cima
18.
Cells ; 10(5)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063503

RESUMO

When myocardial function is compromised as in heart failure (HF), there is activation of the sympathetic nervous system with elevated circulating catecholamine levels. These catecholamines activate cardiac and extra-cardiac adrenergic receptors (ARs). Interest in secreted extracellular vesicles (EVs) from the heart is growing and in HF, it is not known whether excessive activation of α- or ß-adrenergic receptors (ARs) could induce specific changes in EV content. In this study, we have evaluated, by next generation sequencing, the small RNA content, including micro-RNAs (miRs), of circulating EVs of mice exposed to chronic selective α- or ß- AR stimulation. EVs from mouse blood were purified by differential ultracentrifugation resulting in EVs with an average size of 116.6 ± 4.8 nm that by immunoblotting included protein markers of EVs. We identified the presence of miRs in blood EVs using miR-21-5p and -16-5p real-time PCR as known constituents of blood exosomes that make up a portion of EVs. We next performed next generation sequencing (NGS) of small non-coding RNAs found in blood EVs from mice following 7 days of chronic treatment with isoproterenol (ISO) or phenylephrine (PE) to stimulate α- or ß-ARs, respectively. PE increased the percent of genomic repeat region reads and decreased the percent of miR reads. In miR expression analysis, PE and ISO displayed specific patterns of miR expression that suggests differential pathway regulation. The top 20 KEGG pathways predicted by differential expressed miRs show that PE and ISO share 11 of 20 pathways analyzed and reveal also key differences including three synapse relative pathways induced by ISO relative to PE treatment. Both α-and ß-AR agonists can alter small RNA content of circulating blood EVs/exosomes including differential expression and loading of miRs that indicate regulation of distinct pathways. This study provides novel insight into chronic sympathetic nervous system activation in HF where excessive catecholamines may not only participate in pathological remodeling of the heart but alter other organs due to secretion of EVs with altered miR content.


Assuntos
Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/sangue , Receptores Adrenérgicos alfa/sangue , Receptores Adrenérgicos beta/sangue , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Camundongos
19.
Sci Signal ; 14(676)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785612

RESUMO

Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein-coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor-mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.


Assuntos
Cardiomegalia , Quinase 5 de Receptor Acoplado a Proteína G/genética , Insuficiência Cardíaca , Animais , Calmodulina/metabolismo , Cardiomegalia/genética , Núcleo Celular/metabolismo , Insuficiência Cardíaca/genética , Camundongos , Miócitos Cardíacos/metabolismo
20.
Circ Res ; 102(7): 786-94, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18292599

RESUMO

S100A1, a Ca(2+)-binding protein of the EF-hand type, is known to modulate sarcoplasmic reticulum Ca(2+) handling in skeletal muscle and cardiomyocytes. Recently, S100A1 has been shown to be expressed in endothelial cells (ECs). Because intracellular Ca(2+) ([Ca(2+)](i)) transients can be involved in important EC functions and endothelial NO synthase activity, we sought to investigate the impact of endothelial S100A1 on the regulation of endothelial and vascular function. Thoracic aortas from S100A1 knockout mice (SKO) showed significantly reduced relaxation in response to acetylcholine compared with wild-type vessels, whereas direct vessel relaxation using sodium nitroprusside was unaltered. Endothelial dysfunction attributable to the lack of S100A1 expression could also be demonstrated in vivo and translated into hypertension of SKO. Mechanistically, both basal and acetylcholine-induced endothelial NO release of SKO aortas was significantly reduced compared with wild type. Impaired endothelial NO production in SKO could be attributed, at least in part, to diminished agonist-induced [Ca(2+)](i) transients in ECs. Consistently, silencing endothelial S100A1 expression in wild type also reduced [Ca(2+)](i) and NO generation. Moreover, S100A1 overexpression in ECs further increased NO generation that was blocked by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenylborate. Finally, cardiac endothelial S100A1 expression was shown to be downregulated in heart failure in vivo. Collectively, endothelial S100A1 critically modulates vascular function because lack of S100A1 expression leads to decreased [Ca(2+)](i) and endothelial NO release, which contributes, at least partially, to impaired endothelium-dependent vascular relaxation and hypertension in SKO mice. Targeting endothelial S100A1 expression may, therefore, be a novel therapeutic means to improve endothelial function in vascular disease or heart failure.


Assuntos
Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Proteínas S100/metabolismo , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Cálcio/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitroprussiato/farmacologia , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA