Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 120(2): 298-306, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37452011

RESUMO

DNA glycosylases protect genetic fidelity during DNA replication by removing potentially mutagenic chemically damaged DNA bases. Bacterial Lhr proteins are well-characterized DNA repair helicases that are fused to additional 600-700 amino acids of unknown function, but with structural homology to SecB chaperones and AlkZ DNA glycosylases. Here, we identify that Escherichia coli Lhr is a uracil-DNA glycosylase (UDG) that depends on an active site aspartic acid residue. We show that the Lhr DNA helicase activity is functionally independent of the UDG activity, but that the helicase domains are required for fully active UDG activity. Consistent with UDG activity, deletion of lhr from the E. coli chromosome sensitized cells to oxidative stress that triggers cytosine deamination to uracil. The ability of Lhr to translocate single-stranded DNA and remove uracil bases suggests a surveillance role to seek and remove potentially mutagenic base changes during replication stress.


Assuntos
Escherichia coli , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , DNA/metabolismo , Uracila/química , Reparo do DNA , DNA Helicases/metabolismo , Proteínas de Bactérias/metabolismo
2.
Biochem J ; 477(16): 2935-2947, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32706021

RESUMO

The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the 'parental' DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , DNA Arqueal/metabolismo , DNA de Cadeia Simples/metabolismo , Methanobacteriaceae/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA Helicases/química , DNA Helicases/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Methanobacteriaceae/genética , Conformação Proteica
3.
Cell Physiol Biochem ; 51(2): 793-811, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30463060

RESUMO

BACKGROUND/AIMS: MicroRNA (miRNA)-induced suppression of dendritic cells (DCs) has been implicated in many diseases. Therefore, accurate monitoring of miRNA endocytosis by DCs is important for understanding the role of miRNAs in many diseases. Recently, a method for measuring the co-localization of Argonaute 2 (AGO2)-associated miRNAs on laser-scanning confocal microscopy method was proposed to localize the miRNAs. But its definition was limited by the number of observed cells through its accuracy. METHODS: In this study, a method based on imaging flow cytometry was developed to localize miR-590-5p with fluorescent probes in DCs. miR-590-5p proven to play an important role in tumor immunity. This method enabled the quantification, visualization and localization of the fluorescence intensity in 30,000 individual cells. RESULTS: Using this method, the DCs with different endocytotic ability were distinguished. The behaviour of miR-590-5p during endocytosis under the stimulation of tumor antigen in DCs was observed, binding to its cognate target mRNA and degradation in DCs. CONCLUSION: This method based on imaging flow cytometry provide an additional method to study miRNA processing in DCs, which makes it a valuable addition to existing miRNA research techniques.


Assuntos
Células Dendríticas/metabolismo , Citometria de Fluxo/métodos , MicroRNAs/metabolismo , Animais , Antagomirs/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Endocitose , Células Hep G2 , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo
4.
J Biol Chem ; 290(22): 13692-709, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25866208

RESUMO

Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.


Assuntos
Proteínas E1A de Adenovirus/química , Proteínas de Ligação a DNA/química , Dissulfetos/química , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Proto-Oncogênicas/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Cromatografia Líquida , DNA/química , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neoplasias/metabolismo , Oxirredução , Oxigênio/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray
5.
J Biol Chem ; 290(13): 8539-49, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25670864

RESUMO

Ets-2, like its closely related homologue Ets-1, is a member of the Ets family of DNA binding transcription factors. Both proteins are subject to multiple levels of regulation of their DNA binding and transactivation properties. One such regulatory mechanism is the presence of an autoinhibitory module, which in Ets-1 allosterically inhibits the DNA binding activity. This inhibition can be relieved by interaction with protein partners or cooperative binding to closely separated Ets binding sites in a palindromic arrangement. In this study we describe the 2.5 Å resolution crystal structure of a DNA complex of the Ets-2 Ets domain. The Ets domain crystallized with two distinct species in the asymmetric unit, which closely resemble the autoinhibited and DNA bound forms of Ets-1. This discovery prompted us to re-evaluate the current model for the autoinhibitory mechanism and the structural basis for cooperative DNA binding. In contrast to Ets-1, in which the autoinhibition is caused by a combination of allosteric and steric mechanisms, we were unable to find clear evidence for the allosteric mechanism in Ets-2. We also demonstrated two possibly distinct types of cooperative binding to substrates with Ets binding motifs separated by four and six base pairs and suggest possible molecular mechanisms for this behavior.


Assuntos
Proteína Proto-Oncogênica c-ets-2/química , Regulação Alostérica , Cristalografia por Raios X , DNA/química , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
6.
Am J Hum Genet ; 91(5): 897-905, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23063620

RESUMO

Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed.


Assuntos
Acrocefalossindactilia/genética , Estudos de Associação Genética , Proteínas de Membrana/genética , Mutação , Acrocefalossindactilia/diagnóstico , Alelos , Animais , Animais Geneticamente Modificados , Criança , Pré-Escolar , Fácies , Feminino , Genótipo , Humanos , Masculino , Proteínas de Membrana/química , Peixe-Zebra/genética
7.
J Biol Chem ; 288(11): 7803-7814, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23349464

RESUMO

Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein "3-box" motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.


Assuntos
Proteínas de Transporte/química , Proteínas Culina/química , Ubiquitina-Proteína Ligases/química , Sítios de Ligação , Calorimetria/métodos , Cristalografia por Raios X/métodos , Dimerização , Humanos , Modelos Moleculares , Conformação Molecular , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
8.
Biochem Soc Trans ; 42(1): 130-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24450640

RESUMO

The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.


Assuntos
Neoplasias/genética , Proteínas Proto-Oncogênicas c-ets/química , Animais , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Complexos Multiproteicos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/fisiologia
9.
Nucleic Acids Res ; 39(5): 1703-17, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059676

RESUMO

RecQ helicases have attracted considerable interest in recent years due to their role in the suppression of genome instability and human diseases. These atypical helicases exert their function by resolving a number of highly specific DNA structures. The crystal structure of a truncated catalytic core of the human RECQ1 helicase (RECQ1(49-616)) shows a prominent ß-hairpin, with an aromatic residue (Y564) at the tip, located in the C-terminal winged-helix domain. Here, we show that the ß-hairpin is required for the DNA unwinding and Holliday junction (HJ) resolution activity of full-length RECQ1, confirming that it represents an important determinant for the distinct substrate specificity of the five human RecQ helicases. In addition, we found that the ß-hairpin is required for dimer formation in RECQ1(49-616) and tetramer formation in full-length RECQ1. We confirmed the presence of stable RECQ1(49-616) dimers in solution and demonstrated that dimer formation favours DNA unwinding; even though RECQ1 monomers are still active. Tetramers are instead necessary for more specialized activities such as HJ resolution and strand annealing. Interestingly, two independent protein-protein contacts are required for tetramer formation, one involves the ß-hairpin and the other the N-terminus of RECQ1, suggesting a non-hierarchical mechanism of tetramer assembly.


Assuntos
DNA/metabolismo , RecQ Helicases/química , DNA Cruciforme , Dimerização , Humanos , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RecQ Helicases/metabolismo
10.
Curr Opin Struct Biol ; 80: 102601, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182397

RESUMO

The past century has witnessed an exponential increase in our atomic-level understanding of molecular and cellular mechanisms from a structural perspective, with multiple landmark achievements contributing to the field. This, coupled with recent and continuing breakthroughs in artificial intelligence methods such as AlphaFold2, and enhanced computational power, is enabling our understanding of protein structure and function at unprecedented levels of accuracy and predictivity. Here, we describe some of the major recent advances across these fields, and describe, as these technologies coalesce, the potential to utilise our enhanced knowledge of intricate cellular and molecular systems to discover novel therapeutics to alleviate human suffering.


Assuntos
Inteligência Artificial , Biologia , Humanos
11.
Hum Mol Genet ; 19(2): 217-22, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19843542

RESUMO

Mutations of human PHF8 cluster within its JmjC encoding exons and are linked to mental retardation (MR) and a cleft lip/palate phenotype. Sequence comparisons, employing structural insights, suggest that PHF8 contains the double stranded beta-helix fold and ferrous iron binding residues that are present in 2-oxoglutarate-dependent oxygenases. We report that recombinant PHF8 is an Fe(II) and 2-oxoglutarate-dependent N(epsilon)-methyl lysine demethylase, which acts on histone substrates. PHF8 is selective in vitro for N(epsilon)-di- and mono-methylated lysine residues and does not accept trimethyl substrates. Clinically observed mutations to the PHF8 gene cluster in exons encoding for the double stranded beta-helix fold and will therefore disrupt catalytic activity. The PHF8 missense mutation c.836C>T is associated with mild MR, mild dysmorphic features, and either unilateral or bilateral cleft lip and cleft palate in two male siblings. This mutant encodes a F279S variant of PHF8 that modifies a conserved hydrophobic region; assays with both peptides and intact histones reveal this variant to be catalytically inactive. The dependence of PHF8 activity on oxygen availability is interesting because the occurrence of fetal cleft lip has been demonstrated to increase with maternal hypoxia in mouse studies. Cleft lip and other congenital anomalies are also linked indirectly to maternal hypoxia in humans, including from maternal smoking and maternal anti-hypertensive treatment. Our results will enable further studies aimed at defining the molecular links between developmental changes in histone methylation status, congenital disorders and MR.


Assuntos
Fenda Labial/enzimologia , Fissura Palatina/enzimologia , Histona Desmetilases/metabolismo , Deficiência Intelectual/enzimologia , Fatores de Transcrição/metabolismo , Fenda Labial/genética , Fissura Palatina/genética , Células HeLa , Histona Desmetilases/química , Histona Desmetilases/genética , Humanos , Deficiência Intelectual/genética , Mutação , Estrutura Terciária de Proteína , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Biosci Rep ; 41(5)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33942870

RESUMO

As Bioscience Reports enters its fifth decade of continuous multidisciplinary life science publishing, here we present a timely overview of the journal. In addition to introducing ourselves and new Associate Editors for 2021, we reflect on the challenges the new Editorial Board has faced and overcome since we took over the editorial leadership in June of 2020, and detail some key strategies on how we plan to encourage more submissions and broader readership for a better and stronger journal in the coming years.


Assuntos
Pesquisa Biomédica , Publicações Periódicas como Assunto/normas , Publicações Periódicas como Assunto/tendências
13.
NAR Cancer ; 3(1): zcaa043, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34316696

RESUMO

Genome instability is a characteristic enabling factor for carcinogenesis. HelQ helicase is a component of human DNA maintenance systems that prevent or reverse genome instability arising during DNA replication. Here, we provide details of the molecular mechanisms that underpin HelQ function-its recruitment onto ssDNA through interaction with replication protein A (RPA), and subsequent translocation of HelQ along ssDNA. We describe for the first time a functional role for the non-catalytic N-terminal region of HelQ, by identifying and characterizing its PWI-like domain. We present evidence that this domain of HelQ mediates interaction with RPA that orchestrates loading of the helicase domains onto ssDNA. Once HelQ is loaded onto the ssDNA, ATP-Mg2+ binding in the catalytic site activates the helicase core and triggers translocation along ssDNA as a dimer. Furthermore, we identify HelQ-ssDNA interactions that are critical for the translocation mechanism. Our data are novel and detailed insights into the mechanisms of HelQ function relevant for understanding how human cells avoid genome instability provoking cancers, and also how cells can gain resistance to treatments that rely on DNA crosslinking agents.

14.
Protein Sci ; 30(6): 1196-1209, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33884680

RESUMO

Polymerase δ-interacting protein 2 (POLDIP2, PDIP38) is a multifaceted, "moonlighting" protein, involved in binding protein partners from many different cellular processes, including mitochondrial metabolism and DNA replication and repair. How POLDIP2 interacts with many different proteins is unknown. Towards this goal, we present the crystal structure of POLDIP2 to 2.8 Å, which exhibited a compact two-domain ß-strand-rich globular structure, confirmed by circular dichroism and small angle X-ray scattering approaches. POLDIP2 comprised canonical DUF525 and YccV domains, but with a conserved domain linker packed tightly, resulting in an "extended" YccV module. A central channel was observed, which we hypothesize could influence structural changes potentially mediated by redox conditions, following observation of a modified cysteine residue in the channel. Unstructured regions were rebuilt by ab initio modelling to generate a model of full-length POLDIP2. Molecular dynamics simulations revealed a highly dynamic N-terminal region tethered to the YccV-domain by an extended linker, potentially facilitating interactions with distal binding partners. Models of POLDIP2 complexed with two of its partners, PrimPol and PCNA, indicated that dynamic flexibility of the POLDIP2 N-terminus and loop regions likely mediate protein interactions.


Assuntos
Genoma Humano , Instabilidade Genômica , Proteínas Nucleares/química , Cristalografia por Raios X , Humanos , Proteínas Nucleares/genética , Domínios Proteicos
15.
J Struct Biol ; 172(1): 3-13, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20541610

RESUMO

Producing purified human proteins with high yield and purity remains a considerable challenge. We describe the methods utilized in the Structural Genomics Consortium (SGC) in Oxford, resulting in successful purification of 48% of human proteins attempted; of those, the structures of approximately 40% were solved by X-ray crystallography. The main driver has been the parallel processing of multiple (typically 9-20) truncated constructs of each target; modest diversity in vectors and host systems; and standardized purification procedures. We provide method details as well as data on the properties of the constructs leading to crystallized proteins and the impact of methodological variants. These can be used to formulate guidelines for initial approaches to expression of new eukaryotic proteins.


Assuntos
Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X , Vetores Genéticos/genética , Genômica/métodos , Humanos , Dados de Sequência Molecular , Proteínas/genética , Proteômica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Cancers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151005

RESUMO

Post-translational modifications (PTM) of proteins are crucial for fine-tuning a cell's response to both intracellular and extracellular cues. ADP-ribosylation is a PTM, which occurs in two flavours: modification of a target with multiple ADP-ribose moieties (poly(ADP-ribosyl)ation or PARylation) or with only one unit (MARylation), which are added by the different enzymes of the PARP family (also known as the ARTD family). PARylation has been relatively well-studied, particularly in the DNA damage response. This has resulted in the development of PARP inhibitors such as olaparib, which are increasingly employed in cancer chemotherapeutic approaches. Despite the fact that the majority of PARP enzymes catalyse MARylation, MARylation is not as well understood as PARylation. MARylation is a dynamic process: the enzymes reversing intracellular MARylation of acidic amino acids (MACROD1, MACROD2, and TARG1) were discovered in 2013. Since then, however, little information has been published about their physiological function. MACROD1, MACROD2, and TARG1 have a 'macrodomain' harbouring the catalytic site, but no other domains have been identified. Despite the lack of information regarding their cellular roles, there are a number of studies linking them to cancer. However, some of these publications oppose each other, some rely on poorly-characterised antibodies, or on aberrant localisation of overexpressed rather than native protein. In this review, we critically assess the available literature on a role for the hydrolases in cancer and find that, currently, there is limited evidence for a role for MACROD1, MACROD2, or TARG1 in tumorigenesis.

17.
Emerg Top Life Sci ; 2(4): 503-516, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33525823

RESUMO

Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.

19.
Methods Mol Biol ; 1586: 11-31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28470596

RESUMO

Soluble protein expression is a key requirement for biochemical and structural biology approaches to study biological systems in vitro. Production of sufficient quantities may not always be achievable if proteins are poorly soluble which is frequently determined by physico-chemical parameters such as intrinsic disorder. It is well known that discrete protein domains often have a greater likelihood of high-level soluble expression and crystallizability. Determination of such protein domain boundaries can be challenging for novel proteins. Here, we outline the application of bioinformatics tools to facilitate the prediction of potential protein domain boundaries, which can then be used in designing expression construct boundaries for parallelized screening in a range of heterologous expression systems.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Animais , Biologia Computacional , Cristalização , Bases de Dados de Proteínas , Humanos , Cadeias de Markov , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Software , Solubilidade
20.
Nat Commun ; 8: 15847, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621305

RESUMO

Strategies to resolve replication blocks are critical for the maintenance of genome stability. Among the factors implicated in the replication stress response is the ATP-dependent endonuclease ZRANB3. Here, we present the structure of the ZRANB3 HNH (His-Asn-His) endonuclease domain and provide a detailed analysis of its activity. We further define PCNA as a key regulator of ZRANB3 function, which recruits ZRANB3 to stalled replication forks and stimulates its endonuclease activity. Finally, we present the co-crystal structures of PCNA with two specific motifs in ZRANB3: the PIP box and the APIM motif. Our data provide important structural insights into the PCNA-APIM interaction, and reveal unexpected similarities between the PIP box and the APIM motif. We propose that PCNA and ATP-dependency serve as a multi-layered regulatory mechanism that modulates ZRANB3 activity at replication forks. Importantly, our findings allow us to interpret the functional significance of cancer associated ZRANB3 mutations.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , DNA Helicases/genética , Instabilidade Genômica , Humanos , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA