Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 49(5): 1278-1290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368587

RESUMO

Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.


Assuntos
Amidoidrolases , Endocanabinoides , Lisina , Receptor CB1 de Canabinoide , Isolamento Social , Animais , Ratos , Amidoidrolases/genética , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides/metabolismo
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175481

RESUMO

Coeliac disease (CeD) is an immune-mediated disorder triggered by the ingestion of gluten and an as yet unidentified environmental factor in genetically predisposed individuals. The disease involves a major autoimmune component that primarily damages the intestinal mucosa; although, it also has systemic involvement. The Th1 inflammatory response is one of the main events leading to mucosal damage; although, enterocytes and the innate immune response also participate in the pathological mechanism. In this study, we performed an analysis of the gene expression profile of the intestinal mucosa of patients with active disease and compared it with that of patients who do not suffer from gluten-related disorders but report dyspeptic symptoms. This analysis identified 1781 differentially expressed (DE) genes, of which 872 were downregulated and 909 upregulated. Gene Ontology and pathway analysis indicated that the innate and adaptive immune response, in particular the Th1 pathway, are important pathogenetic mechanisms of CeD, while the key cytokines are IL27, IL21, IL2, IL1b, TNF, CSF2 and IL7, as well as type I (IFNA1, IFNA2) and type II (IFNG) interferons. Finally, the comparison between the DE genes identified in this study and those identified in our previous study in the intestinal mucosa of patients with non-celiac gluten sensitivity (NCGS) revealed a high degree of molecular overlap. About 30% of the genes dysregulated in NCGS, most of which are long non-coding RNAs, are also altered in CeD suggesting that these diseases may have a common root (dysregulated long non-coding RNAs) from which they develop towards an inflammatory phenotype of variable degree in the case of CeD and NCGS respectively.


Assuntos
Doença Celíaca , Doenças do Sistema Imunitário , Humanos , Glutens/genética , Imunidade Inata/genética , Sistema Imunitário/patologia , Perfilação da Expressão Gênica
3.
J Cell Biochem ; 123(1): 65-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741485

RESUMO

Pancreatic ductal adenoma carcinoma (PDAC) is considered one of the deadliest solid cancers as it is usually diagnosed in advanced stages and has a poor response to treatment. The enormous effort made in the last 2 decades in the oncology field has not led to significant progress in improving early diagnosis or therapy for PDAC. The stroma of PDAC plays an active role in tumour initiation and progression and includes immune cells and stromal cells. We previously reported that Bcl2-associated athanogene (BAG3) secreted by PDAC cells activates tumour-associated macrophages to promote tumour growth. The disruption of this tumour-stroma axis by the anti-BAG3 H2L4 therapeutic antibody is sufficient to delay tumour growth and limit metastatic spreading in different PDAC preclinical models. In the present study, we examined the role of BAG3 to activate human fibroblasts (HF) in releasing cytokines capable of supporting tumour progression. Treatment of fibroblasts with recombinant BAG3 induced important changes in the organisation of the cytoskeleton of these cells and stimulated the production of interleukin-6, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2, and hepatocyte growth factor. Specifically, we observed that BAG3 triggered a depolymerisation of microtubules at the periphery of the cell while they were conserved in the perinuclear area. Conversely, the vimentin-based intermediate filaments increased and spread to the edges of the cells. Finally, the conditioned medium (CM) collected from BAG3-treated HF promoted the survival, proliferation, and migration of the PDAC cells. Blocking of the PDAC-fibroblast axis by the H2L4 therapeutic anti-BAG3 antibody, resulted in inhibition of cytokine release and, consequently, the inhibition of the migratory phenotype conferred by the CM to PDAC cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Neoplasias Pancreáticas/patologia , Proteínas Recombinantes/farmacologia , Células Sf9 , Spodoptera
4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613462

RESUMO

Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.


Assuntos
COVID-19 , Ferro , Humanos , Ferro/metabolismo , Lipocalina-2 , Síndrome de COVID-19 Pós-Aguda , Araquidonato 5-Lipoxigenase/metabolismo , Proteômica , Biomarcadores
5.
Int J Eat Disord ; 53(5): 432-446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275093

RESUMO

OBJECTIVE: Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD: We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS: Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION: Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.

6.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256105

RESUMO

Bisphenol A (BPA) is an endocrine disruptor that negatively affects spermatogenesis, a process where Sertoli cells play a central role. Thus, in the present study we sought to ascertain whether BPA could modulate the endocannabinoid (eCB) system in exposed mouse primary Sertoli cells. Under our experimental conditions, BPA turned out to be cytotoxic to Sertoli cells with an half-maximal inhibitory concentration (IC50) of ~6.0 µM. Exposure to a non-cytotoxic dose of BPA (i.e., 0.5 µM for 48 h) increased the expression levels of specific components of the eCB system, namely: type-1 cannabinoid (CB1) receptor and diacylglycerol lipase-α (DAGL-α), at mRNA level, type-2 cannabinoid (CB2) receptor, transient receptor potential vanilloid 1 (TRPV1) receptors, and DAGL-ß, at protein level. Interestingly, BPA also increased the production of inhibin B, but not that of transferrin, and blockade of either CB2 receptor or TRPV1 receptor further enhanced the BPA effect. Altogether, our study provides unprecedented evidence that BPA deranges the eCB system of Sertoli cells towards CB2- and TRPV1-dependent signal transduction, both receptors being engaged in modulating BPA effects on inhibin B production. These findings add CB2 and TRPV1 receptors, and hence the eCB signaling, to the other molecular targets of BPA already known in mammalian cells.


Assuntos
Compostos Benzidrílicos/toxicidade , Endocanabinoides/metabolismo , Inibinas/biossíntese , Fenóis/toxicidade , Células de Sertoli/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Células de Sertoli/efeitos dos fármacos , Transferrina/metabolismo
7.
Biotechnol Appl Biochem ; 65(1): 54-61, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28791741

RESUMO

Lipoxygenases (LOXs) are nonheme iron-containing enzymes catalyzing the dioxygenation of polyunsaturated fatty acids. LOX catalytic activity depends on the presence of iron in the active site and the iron removal is also able to affect the membrane binding properties of the enzyme. Leukotrienes biosynthesis is initiated by the action of 5-LOX at the level of nuclear membrane and the mechanism of enzyme-membrane interaction is thought to involve structural flexibility and conformational changes at the level of the protein tertiary structure. In this study, we have analyzed by molecular dynamics simulations the conformational changes induced by iron removal in 5-LOX. The data indicate that the degree of enzyme flexibility is related to the presence of iron into the active site that is able to stabilize the protein increasing its rigidity. These findings provide further evidence that the conformation and the functional activity of LOXs is tuned by the presence of iron at the active site, suggesting new approaches for the design of enzyme inhibitors.


Assuntos
Araquidonato 5-Lipoxigenase/química , Simulação de Dinâmica Molecular , Apoenzimas/química , Apoenzimas/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Domínio Catalítico , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Ferro/química , Ferro/metabolismo
8.
Biotechnol Appl Biochem ; 65(1): 81-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28940598

RESUMO

This minireview focuses on a plant copper/2,4,5-trihydroxyphenyl alanine quinone amine oxidase isolated from the latex of the shrub Euphorbia characias (ELAO). This enzyme has been investigated in terms of both molecular structure and kinetic mechanism. The characterization of this enzyme allowed us to identify specific amino acids and domains that play a key role in modulating substrate access into the active site not only for ELAO but also for other plant and mammalian amine oxidases. As mammalian amine oxidases are implicated in several physiological and pathological conditions, the deep structural characterization of their active site accession mechanisms could be the starting point for the development of enzyme modulators with high therapeutic potential. Thus, this paper gives structural/functional insights that open new perspectives in the research about the whole amine oxidase family.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Euphorbia/enzimologia , Amina Oxidase (contendo Cobre)/isolamento & purificação , Cinética , Estrutura Molecular
9.
Biotechnol Appl Biochem ; 65(1): 21-28, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28833445

RESUMO

The recent resolution of the crystal structure of type-1 cannabinoid receptor (CB1 ) and the discovery of novel modulators for this target open the way to the possibility of elucidating the structural requirements for CB1 binding, and thereby facilitate a rational drug design. Compounds that target the orthosteric site of CB1 in some cases have shown side effects. Allosteric modulators could potentially avoid these side effects by influencing binding and/or efficacy of orthosteric ligands. Here, we summarize and compare previous data on different putative allosteric binding sites observed in CB1 homology models with an in silico docking study of the recently published crystal structure of the same receptor on endogenous and natural hydrophobic ligands that act as positive allosteric modulators and negative allosteric modulators of CB1 . In particular, a lipid-exposed pocket targeted by most of the tested molecules is reported and discussed.


Assuntos
Simulação por Computador , Simulação de Acoplamento Molecular , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Sítio Alostérico , Sítios de Ligação/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes
10.
Biotechnol Appl Biochem ; 65(1): 16-20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28722168

RESUMO

In this study, we investigated the role of CB1 palmitoylation in modulating the functional interaction with G proteins both in the absence and presence of agonist binding. Our data show that the nonpalmitoylated CB1 receptor significantly reduced its association with Gαi2 . The agonist stimulation induced a partial dissociation of Gαi2 proteins from the wild-type receptor, while on the C415A mutant the agonist binding was not able to induce a significant dissociation of Gαi2 from the receptor. The lack of palmitoyl chain seems to hamper the ability of the receptor to functionally interact with the Gαi2 and indicate that the palmitoyl chain is responsible for the functional transmission of the agonist-induced conformational change in the receptor of the G protein. These data were further corroborated by molecular dynamics simulations. Overall these results suggest that palmitoylation of the CB1 receptor finely tunes its interaction with G proteins and serves as a targeting signal for its functional regulation. Of note, the possibility to reversibly modulate the palmitoylation of CB1 receptor may offer a coordinated process of regulation and could open new therapeutic approaches.


Assuntos
Cisteína/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Cisteína/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Humanos , Lipoilação , Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/química
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 523-532, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28215712

RESUMO

We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.


Assuntos
Caveolina 1/metabolismo , Colesterol/metabolismo , Ácido Palmítico/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Caveolina 1/química , Caveolina 1/genética , Linhagem Celular , Colesterol/química , Cisteína/química , Cisteína/genética , Células HEK293 , Humanos , Ligantes , Lipoilação/genética , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ácido Palmítico/química , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas/genética , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/genética
12.
Hemoglobin ; 41(1): 53-55, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28391745

RESUMO

We report a clinical update of the hemoglobin (Hb) variant [ß27(B9)Ala→Gly; HBB: c.83C>G], named Hb Siirt, that was previously described as a silent variant in a 23-year-old Kurdish female. The patient was also a carrier of the codon 5 (-CT) (HBB: c.17_18delCT) frameshift mutation and of the ααα anti 3.7 triplication. Her initial moderate ß-thalassemia intermedia (ß-TI) phenotype worsened with time, causing the patient to become a transfusion-dependent subject at the age of ∼40 years. Subsequent molecular characterization of both parents revealed that the Hb Siirt variant was inherited by the mother, while the other two globin alterations (HBB: c.17_18delCT and αααanti 3.7 triplication) were genetically transmitted by the father. The latter remained a carrier of a mild ß-TI phenotype throughout his life, at least until the age of 65 years. We hypothesize that the worsened clinical conditions in the daughter were due to the additional, maternally inherited Hb Siirt variant. However, protein 3D conformational analysis did not seem to reveal substantial overall structural changes. Among the other three described variants [Hb Volga (HBB: c.83C>A), Hb Knossos (HBB: c.82 G>T), Hb Grange-Blanche (HBB: c.83C>T] that are due to nucleotide substitutions at codon 27 of the ß-globin gene; only Hb Knossos causes a ß+-thalassemia (ß+-thal) phenotype.


Assuntos
Alelos , Substituição de Aminoácidos , Códon , Hemoglobinas Anormais/genética , Globinas beta/genética , Índices de Eritrócitos , Feminino , Estudos de Associação Genética , Genótipo , Heme/química , Heme/metabolismo , Hemoglobinas Anormais/química , Hemoglobinas Anormais/metabolismo , Heterozigoto , Humanos , Modelos Moleculares , Conformação Molecular , Oxigênio/metabolismo , Fenótipo , Ligação Proteica , Adulto Jovem , alfa-Globinas/genética , Globinas beta/química , Globinas beta/metabolismo , Talassemia beta/sangue , Talassemia beta/diagnóstico , Talassemia beta/genética
13.
Biochim Biophys Acta ; 1841(1): 1-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24012824

RESUMO

Lipoxygenases (LOXs) are lipid-peroxidizing enzymes that are involved in the metabolism of polyunsaturated fatty acids. Their biological activity includes a membrane binding process whose molecular details are not completely understood. The mechanism of enzyme-membrane interactions is thought to involve conformational changes at the level of the protein tertiary structure, and the extent of such alterations depends on the degree of structural flexibility of the different LOX isoforms. In this study, we have tested the resilience properties of a plant and a mammalian LOX, by using high pressure fluorescence measurements at different temperatures. The binding of LOXs to the lipid bilayer has been characterized using both large and giant unilamellar vesicles and electron transfer particles (inner mitochondrial membranes) as model membranes. The data indicate that the degree of LOXs' flexibility is strictly dependent on the two distinct N- and C-terminal domains that characterize the 3D structure of these enzymes. Furthermore, they demonstrate that increasing the rigidity of protein scaffolding by the presence of an active site ligand impairs the membrane binding ability of LOXs. These findings provide evidence that the amphitropic nature of LOXs is finely tuned by the interaction of the substrate with the residues of the active site, suggesting new strategies for the design of enzyme inhibitors.


Assuntos
Ácido 5,8,11,14-Eicosatetrainoico/química , Bicamadas Lipídicas/química , Inibidores de Lipoxigenase/química , Lipoxigenase/química , Membranas Mitocondriais/química , Domínio Catalítico , Humanos , Membranas Mitocondriais/enzimologia
14.
Biochem J ; 457(3): 463-72, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24215562

RESUMO

Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.


Assuntos
Amidoidrolases/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Modelos Biológicos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Amidoidrolases/genética , Animais , Linhagem Celular , Detergentes/química , Dimerização , Endocanabinoides/metabolismo , Hidrólise , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estabilidade Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Trends Biochem Sci ; 35(11): 601-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20570522

RESUMO

Endocannabinoids are key mediators of many aspects of human health and disease. The biological activity of anandamide, a prominent member of this group, depends on the metabolic control exerted by biosynthetic, catabolic and oxidative pathways working together. Cellular uptake and intracellular trafficking of anandamide are crucial steps in the process. Whereas the identity of anandamide transmembrane carriers remains undetermined, recent insights have been gained related to its intracellular stores (adiposomes) and intracellular binding proteins, particularly fatty acid binding proteins, albumin and heat shock protein 70. On this basis, we propose a reconsideration of the dogma that endocannabinoids are exclusively synthesized and released 'on demand', and suggest that their metabolic control is complemented by intracellular trafficking and storage in specific reservoirs.


Assuntos
Ácidos Araquidônicos/metabolismo , Espaço Intracelular/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Transdução de Sinais , Animais , Ácidos Araquidônicos/química , Transporte Biológico , Endocanabinoides , Humanos , Membranas Intracelulares/metabolismo , Alcamidas Poli-Insaturadas/química , Ligação Proteica
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2101-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25084330

RESUMO

Amine oxidases are a family of dimeric enzymes that contain one copper(II) ion and one 2,4,5-trihydroxyphenyalanine quinone per subunit. Here, the low-resolution structures of two Cu/TPQ amine oxidases from lentil (Lens esculenta) seedlings and from Euphorbia characias latex have been determined in solution by small-angle X-ray scattering. The active site of these enzymes is highly buried and requires a conformational change to allow substrate access. The study suggests that the funnel-shaped cavity located between the D3 and D4 domains is narrower within the crystal structure, whereas in solution the D3 domain could undergo movement resulting in a protein conformational change that is likely to lead to easier substrate access.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Cobre/metabolismo , Amina Oxidase (contendo Cobre)/química , Sequência de Aminoácidos , Domínio Catalítico , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
17.
Biochim Biophys Acta ; 1821(11): 1425-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22877990

RESUMO

Fatty acid amide hydrolase (FAAH) is a membrane protein that plays a relevant role in the metabolism of fatty acid amides and esters. It degrades important neurotransmitters such as oleamide and anandamide, and it has been involved in a number of human pathological conditions, representing therefore a valuable target for biochemical and pharmacological research. In this study, we have investigated in vitro the structure-function relationship of rat and human FAAHs. In particular circular dichroism, fluorescence spectroscopy and light scattering measurements have been performed, in order to characterize the structural features of the two proteins, both in the presence and absence of the irreversible inhibitor methoxyarachidonyl-fluorophosphonate. The results demonstrate that the structural dynamics of the two FAAHs are different, despite their high sequence homology and overall similarity in temperature-dependence. Additionally, membrane binding and kinetic assays of both FAAHs indicate that also the functional properties of the two enzymes are different in their interaction with lipid bilayers and with exogenous inhibitors. These findings suggest that pre-clinical studies of FAAH-dependent human diseases based only on animal models should be interpreted with caution, and that the efficacy of new drugs targeted to FAAH should be tested in vitro, on both rat and human enzymes.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Ácidos Araquidônicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Organofosfonatos/farmacologia , Amidoidrolases/química , Animais , Humanos , Cinética , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Especificidade por Substrato
18.
FASEB J ; 26(5): 1791-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22253478

RESUMO

The functional adaptation of the immune system to the surrounding environment is also a fundamental issue in space. It has been suggested that a decreased number of lymphocytes might be a cause of immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of the apoptotic program. The goal of the role of apoptosis in lymphocyte depression (ROALD) experiment, flown on the International Space Station as part of the BIO-4 mission of the European Space Agency, was to ascertain the induction of apoptosis in human lymphocytes under authentic microgravity, and to elucidate the possible involvement of 5-LOX. Our results demonstrate that exposure of human lymphocytes to microgravity for 48 h onboard the ISS remarkably increased apoptotic hallmarks such as DNA fragmentation (∼3-fold compared to ground-based controls) and cleaved-poly (ADP-ribose) polymerase (PARP) protein expression (∼3-fold), as well as mRNA levels of apoptosis-related markers such as p53 (∼3-fold) and calpain (∼4-fold); these changes were paralleled by an early increase of 5-LOX activity (∼2-fold). Our findings provide a molecular background for the immune dysfunction observed in astronauts during space missions, and reveal potential new markers to monitor health status of ISS crew members.


Assuntos
Apoptose , Araquidonato 5-Lipoxigenase/metabolismo , Astronautas , Linfócitos/citologia , Voo Espacial , Sequência de Bases , Primers do DNA , Humanos , Cooperação Internacional , Linfócitos/enzimologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ausência de Peso
20.
Methods Mol Biol ; 2576: 453-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152209

RESUMO

A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular membrane compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cells. Herein, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.


Assuntos
Biotina , Endocanabinoides , Transporte Biológico , Biotina/metabolismo , Endocanabinoides/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Alcamidas Poli-Insaturadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA