Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(9): 2999-3018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38877156

RESUMO

2-Benzylbenzimidazole 'nitazene' opioids are presenting a growing threat to public health. Although various nitazenes were previously studied, systematic comparisons of the effects of different structural modifications to the 2-benzylbenzimidazole core structure on µ-opioid receptor (MOR) activity are limited. Here, we assessed in vitro structure-activity relationships of 9 previously uncharacterized nitazenes alongside known structural analogues. Specifically, we focused on MOR activation by 'ring' substituted analogues (i.e., N-pyrrolidino and N-piperidinyl modifications), 'desnitazene' analogues (lacking the 5-nitro group), and N-desethyl analogues. The results from two in vitro MOR activation assays (ß-arrestin 2 recruitment and inhibition of cAMP accumulation) showed that 'ring' modifications overall yield highly active drugs. With the exception of 4'-OH analogues (which are metabolites), N-pyrrolidino substitutions were generally more favorable for MOR activation than N-piperidine substitutions. Furthermore, removal of the 5-nitro group on the benzimidazole ring consistently caused a pronounced decrease in potency. The N-desethyl modifications showed important MOR activity, and generally resulted in a slightly lowered potency than comparator nitazenes. Intriguingly, N-desethyl isotonitazene was the exception and was consistently more potent than isotonitazene. Complementing the in vitro findings and demonstrating the high harm potential associated with many of these compounds, we describe 85 forensic cases from North America and the United Kingdom involving etodesnitazene, N-desethyl etonitazene, N-desethyl isotonitazene, N-pyrrolidino metonitazene, and N-pyrrolidino protonitazene. The low-to-sub ng/mL blood concentrations observed in most cases underscore the drugs' high potencies. Taken together, by bridging pharmacology and case data, this study may aid to increase awareness and guide legislative and public health efforts.


Assuntos
Analgésicos Opioides , Benzimidazóis , Relação Estrutura-Atividade , Humanos , Benzimidazóis/química , Benzimidazóis/farmacologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Células HEK293 , Animais , Nitrocompostos/química
2.
Harm Reduct J ; 21(1): 159, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198843

RESUMO

BACKGROUND: 2-Benzylbenzimidazole 'nitazene' opioids pose a growing threat to public health. Nitazene analogues are increasingly found mixed with or (mis)sold as heroin and in falsified (non-)opioid medications, posing a great risk of intoxication in users (un)knowingly exposed to these potent opioids. Lateral flow immunoassay nitazene test strips (NTS; BTNX Rapid Response™) became commercially available in Q1 2024, with the aim to enable rapid detection of nitazene analogues in drug samples. As only limited independent data is available on the performance of these strips, this lab-based study aimed at evaluating their potential for drug checking applications. METHODS: Following dilution of drug standards in water, the NTS readouts were analyzed independently by two individuals and by ImageJ. The limit of detection for isotonitazene was determined using two manufacturing lots of NTS. Cross-reactivity with 32 other nitazene analogues was evaluated. Six sourced drug samples were tested to explore the ability of NTS to detect the presence of a nitazene analogue in authentic samples. RESULTS: The limits of detection for isotonitazene were 2000 or 3000 ng/mL, depending on the lot. Twenty-four of the 33 tested nitazene analogues cross-reacted with the NTS at concentrations ≤ 9000 ng/mL. Structural analysis indicated that either substitution or removal of the 5-nitro group, or lengthening the linker between the two aromatic rings, generally hampered detection. All six authentic drug samples consistently tested positive, with no observed false negatives. CONCLUSIONS: This study provides a better understanding of the potential of NTS for drug checking purposes. Our findings indicate that NTS can theoretically alert to the presence of most nitazene analogues that have emerged on recreational drug markets. However, 'desnitazenes' (lacking the 5-nitro group) may yield false negative results due to low cross-reactivity. Although factors like specificity, lot-to-lot variability, nitazene analogue content in drug samples, solubility, and different testing conditions should be considered, our study results indicate that, at least under the conditions evaluated here (using reference standards and sourced powders), NTS are capable of detecting the presence of a wide range of nitazene analogues. Hence, NTS may alert users of the presence of nitazene analogues in drug samples.


Assuntos
Nitrocompostos , Nitrocompostos/análise , Humanos , Fitas Reagentes , Limite de Detecção , Imunoensaio/métodos , Analgésicos Opioides/análise , Detecção do Abuso de Substâncias/métodos
3.
J Pharm Biomed Anal ; 251: 116453, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216307

RESUMO

The emergence of 2-benzylbenzimidazole "nitazene" opioids is stirring up the recreational synthetic opioid market. Many nitazene analogues act as potent agonists at the µ­opioid receptor (MOR), as demonstrated in various in vitro and in vivo studies. Severe intoxication and overdose deaths associated with nitazene analogues are increasingly being reported. Nitazene opioids are classified as a public health threat, stressing the need for close monitoring of new developments on the recreational drug market. This study reports on the detection of N-desethyl etonitazene in a sample handed in by a recreational drug user at a Swiss drug checking service in August 2023. The person bought the sample through an internet source where it was stated to contain isotonitazene. Chemical analyses were conducted to characterize the sample, i.e. nuclear magnetic resonance (NMR), capillary electrophoresis (CE), and high-resolution mass spectrometry (HRMS). The sample was additionally investigated using two different in vitro MOR activation assays. NMR and high-performance liquid chromatography (HPLC) coupled to HRMS confirmed the presence of N-desethyl etonitazene at a high purity and in the absence of isotonitazene and etonitazene. N-Desethyl nitazene analogues have been detected before as metabolites of isotonitazene and etonitazene. However, as first seen with N-desethyl isotonitazene, they are now emerging as standalone drugs. The applied bioassays demonstrated increased efficacy and approximately 6-9-fold higher potency of N-desethyl etonitazene at MOR compared to fentanyl. N-Desethyl etonitazene showed EC50 values of 3.35 nM and 0.500 nM in the ß-arrestin 2 recruitment and Aequoscreen® assays, respectively. The opioid activity present in the collected sample was additionally evaluated using the bioassays and showed good overlap with the reference standard, in line with the analytical purity assessment. This demonstrates the potential of these bioassays to provide a rapid opioid activity assessment of authentic samples. The emergence of other N-desethyl nitazene analogues must be considered during forensic and clinical toxicology casework, to avoid misclassification of intake of such analogues as metabolites. Finally, drug checking services enable the close monitoring of market developments and trends and are of great value for early warning and harm reduction purposes.


Assuntos
Analgésicos Opioides , Benzimidazóis , Drogas Ilícitas , Benzimidazóis/análise , Benzimidazóis/química , Humanos , Analgésicos Opioides/análise , Analgésicos Opioides/química , Drogas Ilícitas/análise , Drogas Ilícitas/química , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Eletroforese Capilar/métodos , Nitrocompostos/análise , Espectrometria de Massas/métodos , Animais , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA