Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 300(5): 107265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582452

RESUMO

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Histidina Quinase , Domínios Proteicos , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase/metabolismo , Histidina Quinase/química , Histidina Quinase/genética , Modelos Moleculares , Transdução de Sinais , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/genética
2.
Nucleic Acids Res ; 45(10): 6238-6251, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28453785

RESUMO

Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5΄-phosphate/3΄-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4-LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP-XRCC4-LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation and that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexible multi-state complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4-LigIV. A mutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4-LigIV that regulate PNKP recruitment and activity within NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades/fisiologia , DNA Ligase Dependente de ATP/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Domínio Catalítico , Dano ao DNA , DNA Ligase Dependente de ATP/química , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/química , Deutério/metabolismo , Deficiências do Desenvolvimento/genética , Humanos , Espectrometria de Massas , Microcefalia/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação de Sentido Incorreto , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Mutação Puntual , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Convulsões/genética , Síndrome , Difração de Raios X
3.
Proc Natl Acad Sci U S A ; 113(31): 8813-8, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432973

RESUMO

A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Legionella pneumophila/genética , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica/métodos , Humanos , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Modelos Genéticos , Regulon/genética , Transformação Bacteriana
4.
J Biol Chem ; 291(18): 9396-410, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26903517

RESUMO

DNA double strand break (DSB) responses depend on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 plus E2 ubiquitin-conjugating enzyme Ubc13 to specifically generate histone Lys-63-linked ubiquitin chains in DSB signaling. Here, we defined the activated RNF8-Ubc13∼ubiquitin complex by x-ray crystallography and its functional solution conformations by x-ray scattering, as tested by separation-of-function mutations imaged in cells by immunofluorescence. The collective results show that the RING E3 RNF8 targets E2 Ubc13 to DSB sites and plays a critical role in damage signaling by stimulating polyubiquitination through modulating conformations of ubiquitin covalently linked to the Ubc13 active site. Structure-guided separation-of-function mutations show that the RNF8 E2 stimulating activity is essential for DSB signaling in mammalian cells and is necessary for downstream recruitment of 53BP1 and BRCA1. Chromatin-targeted RNF168 rescues 53BP1 recruitment involved in non-homologous end joining but not BRCA1 recruitment for homologous recombination. These findings suggest an allosteric approach to targeting the ubiquitin-docking cleft at the E2-E3 interface for possible interventions in cancer and chronic inflammation, and moreover, they establish an independent RNF8 role in BRCA1 recruitment.


Assuntos
Quebras de DNA de Cadeia Dupla , Transdução de Sinais , Proteínas Supressoras de Tumor , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Proteína BRCA1 , Cristalografia por Raios X , Camundongos , Estrutura Quaternária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Plasmid ; 78: 79-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25102058

RESUMO

Antisense RNAs have long been known to regulate diverse aspects of plasmid biology. Here we review the FinOP system that modulates F plasmid gene expression through regulation of the F plasmid transcription factor, TraJ. FinOP is a two component system composed of an antisense RNA, FinP, which represses TraJ translation, and a protein, FinO, which is required to stabilize FinP and facilitate its interactions with its traJ mRNA target. We review the evidence that FinO acts as an RNA chaperone to bind and destabilize internal stem-loop structures within the individual RNAs that would otherwise block intermolecular RNA duplexing. Recent structural studies have provided mechanistic insights into how FinO may facilitate interactions between FinP and traJ mRNA. We also review recent findings that two other proteins, Escherichia coli ProQ and Neisseria meningitidis NMB1681, may represent FinO-like RNA chaperones.


Assuntos
Proteínas de Escherichia coli/metabolismo , Fator F/genética , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Regulação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Conformação de Ácido Nucleico , RNA Antissenso , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética
6.
J Phys Chem B ; 128(35): 8388-8399, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39186634

RESUMO

The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state. Intriguingly, the overall ATPase activity of dimeric Hsp90 can be asymmetrically enhanced through a single subunit when Hsp90 is bound to a cochaperone or when Hsp90 is composed of one active and one catalytically defunct subunit as a heterodimer. To explore the mechanism of asymmetric Hsp90 activation, we designed a subunit bearing N-terminal ATPase mutations that demonstrate increased intra- and interdomain dynamics. Using intact Hsp90 and various N-terminal and middle domain constructs, we blended 19F NMR spectroscopy, molecular dynamics (MD) simulations, and ATPase assays to show that within the context of heterodimeric Hsp90, the conformationally dynamic subunit stimulates the ATPase activity of the normal subunit. The contrasting dynamic properties of the subunits within heterodimeric Hsp90 provide a mechanistic framework to understand the molecular basis for asymmetric Hsp90 activation and its importance for the biological function of Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90 , Simulação de Dinâmica Molecular , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Biocatálise
7.
J Biol Chem ; 287(28): 23900-10, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22589545

RESUMO

The repair of DNA double strand breaks by homologous recombination relies on the unique topology of the chains formed by Lys-63 ubiquitylation of chromatin to recruit repair factors such as breast cancer 1 (BRCA1) to sites of DNA damage. The human RING finger (RNF) E3 ubiquitin ligases, RNF8 and RNF168, with the E2 ubiquitin-conjugating complex Ubc13/Mms2, perform the majority of Lys-63 ubiquitylation in homologous recombination. Here, we show that RNF8 dimerizes and binds to Ubc13/Mms2, thereby stimulating formation of Lys-63 ubiquitin chains, whereas the related RNF168 RING domain is a monomer and does not catalyze Lys-63 polyubiquitylation. The crystal structure of the RNF8/Ubc13/Mms2 ternary complex reveals the structural basis for the interaction between Ubc13 and the RNF8 RING and that an extended RNF8 coiled-coil is responsible for its dimerization. Mutations that disrupt the RNF8/Ubc13 binding surfaces, or that truncate the RNF8 coiled-coil, reduce RNF8-catalyzed ubiquitylation. These findings support the hypothesis that RNF8 is responsible for the initiation of Lys-63-linked ubiquitylation in the DNA damage response, which is subsequently amplified by RNF168.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ligases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Ligases/química , Ligases/genética , Lisina/química , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Dedos de Zinco
8.
Nucleic Acids Res ; 39(15): 6775-88, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21565799

RESUMO

The conjugative transfer of F-like plasmids such as F, R1, R100 and pED208, between bacterial cells requires TraM, a plasmid-encoded DNA-binding protein. TraM tetramers bridge the origin of transfer (oriT) to a key component of the conjugative pore, the coupling protein TraD. Here we show that TraM recognizes a high-affinity DNA-binding site, sbmA, as a cooperative dimer of tetramers. The crystal structure of the TraM-sbmA complex from the plasmid pED208 shows that binding cooperativity is mediated by DNA kinking and unwinding, without any direct contact between tetramers. Sequence-specific DNA recognition is carried out by TraM's N-terminal ribbon-helix-helix (RHH) domains, which bind DNA in a staggered arrangement. We demonstrate that both DNA-binding specificity, as well as selective interactions between TraM and the C-terminal tail of its cognate TraD mediate conjugation specificity within the F-like family of plasmids. The ability of TraM to cooperatively bind DNA without interaction between tetramers leaves the C-terminal TraM tetramerization domains free to make multiple interactions with TraD, driving recruitment of the plasmid to the conjugative pore.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator F/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
9.
Nucleic Acids Res ; 39(10): 4450-63, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21278162

RESUMO

Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5'-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem-loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3' single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3'-nucleotide blocks FinO binding, suggesting FinO binds the 3'-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO-SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Bactérias/química , RNA Antissenso/química , Proteínas de Ligação a RNA/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Antissenso/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease Pancreático/metabolismo
10.
Nat Commun ; 13(1): 7076, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400772

RESUMO

The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a ß-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif. Structure-guided mutagenesis reveals key RNA contact residues that are critical for RocC/RocR to repress the uptake of environmental DNA in L. pneumophila. Structural analysis and RNA binding studies reveal that other ProQ/FinO domains also recognize related transcriptional terminators with different specificities for the length of the 3' ssRNA tail.


Assuntos
Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Pequeno RNA não Traduzido/genética
11.
J Bacteriol ; 193(9): 2149-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21317318

RESUMO

CpxP is a novel bacterial periplasmic protein with no homologues of known function. In gram-negative enteric bacteria, CpxP is thought to interact with the two-component sensor kinase, CpxA, to inhibit induction of the Cpx envelope stress response in the absence of protein misfolding. CpxP has also been shown to facilitate DegP-mediated proteolysis of misfolded proteins. Six mutations that negate the ability of CpxP to function as a signaling protein are localized in or near two conserved LTXXQ motifs that define a class of proteins with similarity to CpxP, Pfam PF07813. To gain insight into how these mutations might affect CpxP signaling and/or proteolytic adaptor functions, the crystal structure of CpxP from Escherichia coli was determined to 2.85-Å resolution. The structure revealed an antiparallel dimer of intertwined α-helices with a highly basic concave surface. Each protomer consists of a long, hooked and bent hairpin fold, with the conserved LTXXQ motifs forming two diverging turns at one end. Biochemical studies demonstrated that CpxP maintains a dimeric state but may undergo a slight structural adjustment in response to the inducing cue, alkaline pH. Three of the six previously characterized cpxP loss-of-function mutations, M59T, Q55P, and Q128H, likely result from a destabilization of the protein fold, whereas the R60Q, D61E, and D61V mutations may alter intermolecular interactions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Estresse Fisiológico/fisiologia , Motivos de Aminoácidos , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Transdução de Sinais
12.
Biochemistry ; 50(15): 3095-106, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21381725

RESUMO

Transporter ProP mediates osmolyte accumulation in Escherichia coli cells exposed to high osmolality media. The cytoplasmic ProQ protein amplifies ProP activity by an unknown mechanism. The N- and C-terminal domains of ProQ are predicted to be structurally similar to known RNA chaperone proteins FinO and Hfq from E. coli. Here we demonstrate that ProQ is an RNA chaperone, binding RNA and facilitating both RNA strand exchange and RNA duplexing. Experiments performed with the isolated ProQ domains showed that the FinO-like domain serves as a high-affinity RNA-binding domain, whereas the Hfq-like domain is largely responsible for RNA strand exchange and duplexing. These data suggest that ProQ may regulate ProP production. Transcription of proP proceeds from RpoD- and RpoS-dependent promoters. Lesions at proQ affected ProP levels in an osmolality- and growth phase-dependent manner, decreasing ProP levels when proP was expressed from its own chromosomal promoters or from a heterologous plasmid-based promoter. Small RNA molecules are known to regulate cellular levels of sigma factor RpoS. ProQ did not act by changing RpoS levels since proQ lesions did not influence RpoS-dependent stationary phase thermotolerance and they affected ProP production and activity similarly in bacteria without and with an rpoS defect. Taken together, these results suggest that ProQ does not regulate proP transcription. It may act as an RNA-binding protein to regulate proP translation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , RNA Bacteriano/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Loci Gênicos/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA , Simportadores/genética , Transcrição Gênica
13.
RNA Biol ; 7(6): 812-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21045552

RESUMO

The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense - antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO_conjugation_repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5' and 3' single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conjugação Genética , Fator F/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência
14.
Methods Mol Biol ; 2106: 1-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889248

RESUMO

The FinO family of proteins constitutes a group of RNA chaperones that interacts with small RNAs (sRNAs) to regulate gene expression in many bacterial species. Here we describe detailed protocols for the biochemical analysis of the RNA chaperone activity of these proteins. Methods are described for preparation of RNA, RNA 5' end labeling with radioisotope and modified EMSA protocols to test the ability of these proteins to catalyze RNA strand exchange and RNA duplex formation.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Técnicas de Sonda Molecular , Pequeno RNA não Traduzido/química , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Estabilidade de RNA , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo
15.
Mol Microbiol ; 70(1): 89-99, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18717787

RESUMO

F plasmid-mediated bacterial conjugation requires interactions between a relaxosome component, TraM, and the coupling protein TraD, a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. Here we present the crystal structure of the C-terminal tail of TraD bound to the TraM tetramerization domain, the first structural evidence of relaxosome-coupling protein interactions. The structure reveals the TraD C-terminal peptide bound to each of four symmetry-related grooves on the surface of the TraM tetramer. Extensive protein-protein interactions were observed between the two proteins. Mutational analysis indicates that these interactions are specific and required for efficient F conjugation in vivo. Our results suggest that specific interactions between the C-terminal tail of TraD and the TraM tetramerization domain might lead to more generalized interactions that stabilize the relaxosome-coupling protein complex in preparation for conjugative DNA transfer.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator F/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , DNA Bacteriano/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
16.
Structure ; 27(10): 1485-1496.e4, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402222

RESUMO

ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Compostos de Anilina/metabolismo , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Modelos Moleculares , Compostos Organofosforados/metabolismo , Ligação Proteica , Conformação Proteica , Proteína Fosfatase 1/química , Espalhamento a Baixo Ângulo , Proteína Supressora de Tumor p53/metabolismo , Difração de Raios X
17.
Biochemistry ; 47(44): 11446-56, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18842000

RESUMO

The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF-50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins. Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.


Assuntos
Fator Estimulador de Clivagem/química , Fator Estimulador de Clivagem/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação , Fator Estimulador de Clivagem/genética , Cristalografia por Raios X , Dano ao DNA , Humanos , Técnicas In Vitro , Modelos Moleculares , Poliadenilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Difração de Raios X
18.
Front Neurosci ; 12: 254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740272

RESUMO

There are nearly 50 million people with Alzheimer's disease (AD) worldwide and currently no disease modifying treatment is available. AD is characterized by deposits of Amyloid-ß (Aß), neurofibrillary tangles, and neuroinflammation, and several drug discovery programmes studies have focussed on Aß as therapeutic target. Active immunization and passive immunization against Aß leads to the clearance of deposits in humans and transgenic mice expressing human Aß but have failed to improve memory loss. This review will discuss the possible explanations for the lack of efficacy of Aß immunotherapy, including the role of a pro-inflammatory response and subsequent vascular side effects, the binding site of therapeutic antibodies and the timing of the treatment. We further discuss how antibodies can be engineered for improved efficacy.

19.
Structure ; 25(10): 1582-1588.e3, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28919440

RESUMO

Topoisomerase IIß binding protein 1 (TopBP1) is a critical protein-protein interaction hub in DNA replication checkpoint control. It was proposed that TopBP1 BRCT5 interacts with Bloom syndrome helicase (BLM) to regulate genome stability through either phospho-Ser304 or phospho-Ser338 of BLM. Here we show that TopBP1 BRCT5 specifically interacts with the BLM region surrounding pSer304, not pSer338. Our crystal structure of TopBP1 BRCT4/5 bound to BLM reveals recognition of pSer304 by a conserved pSer-binding pocket, and interactions between an FVPP motif N-terminal to pSer304 and a hydrophobic groove on BRCT5. This interaction utilizes the same surface of BRCT5 that recognizes the DNA damage mediator, MDC1; however the binding orientations of MDC1 and BLM are reversed. While the MDC1 interactions are largely electrostatic, the interaction with BLM has higher affinity and relies on a mix of electrostatics and hydrophobicity. We suggest that similar evolutionarily conserved interactions may govern interactions between TopBP1 and 53BP1.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Conformação Proteica , Serina/metabolismo , Transativadores/metabolismo
20.
ACS Chem Biol ; 10(7): 1718-28, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25909880

RESUMO

Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine. The resulting adducts of both compounds exploit a binding groove unique to Ubc13. We developed a Ubc13 mutant which resists NSC697923 inhibition and, using this mutant, we show that the inhibition of cellular DNA damage and NF-κB signaling by NSC697923 is largely due to specific Ubc13 inhibition. We propose that unique structural features near the Ubc13 active site could provide a basis for the rational development and design of specific Ubc13 inhibitors.


Assuntos
Nitrilas/farmacologia , Nitrofuranos/farmacologia , Sulfonas/farmacologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , NF-kappa B/antagonistas & inibidores , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA