Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 134(6): 969-80, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805090

RESUMO

DNA interstrand crosslinks (ICLs) are toxic DNA lesions whose repair occurs in the S phase of metazoans via an unknown mechanism. Here, we describe a cell-free system based on Xenopus egg extracts that supports ICL repair. During DNA replication of a plasmid containing a site-specific ICL, two replication forks converge on the crosslink. Subsequent lesion bypass involves advance of a nascent leading strand to within one nucleotide of the ICL, followed by incisions, translesion DNA synthesis, and extension of the nascent strand beyond the lesion. Immunodepletion experiments suggest that extension requires DNA polymerase zeta. Ultimately, a significant portion of the input DNA is fully repaired, but not if DNA replication is blocked. Our experiments establish a mechanism for ICL repair that reveals how this process is coupled to DNA replication.


Assuntos
Reparo do DNA , Replicação do DNA , Animais , Sistema Livre de Células , DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Xenopus
2.
Nucleic Acids Res ; 49(1): 306-321, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330937

RESUMO

The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , DNA Ligase Dependente de ATP/química , Dimerização , Humanos , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos , Mutação , Mutação de Sentido Incorreto , Coloração Negativa , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
3.
Biochem J ; 478(13): 2665-2679, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34160020

RESUMO

The crystal structure of full-length T7 DNA polymerase in complex with its processivity factor thioredoxin and double-stranded DNA in the polymerization active site exhibits two novel structural motifs in family-A DNA polymerases: an extended ß-hairpin at the fingers subdomain, that interacts with the DNA template strand downstream the primer-terminus, and a helix-loop-helix motif (insertion1) located between residues 102 to 122 in the exonuclease domain. The extended ß-hairpin is involved in nucleotide incorporation on substrates with 5'-overhangs longer than 2 nt, suggesting a role in stabilizing the template strand into the polymerization domain. Our biochemical data reveal that insertion1 of the exonuclease domain makes stabilizing interactions that facilitate proofreading by shuttling the primer strand into the exonuclease active site. Overall, our studies evidence conservation of the 3'-5' exonuclease domain fold between family-A DNA polymerases and highlight the modular architecture of T7 DNA polymerase. Our data suggest that the intercalating ß-hairpin guides the template-strand into the polymerization active site after the T7 primase-helicase unwinds the DNA double helix ameliorating the formation of secondary structures and decreasing the appearance of indels.


Assuntos
Bacteriófago T7/enzimologia , Domínio Catalítico , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago T7/genética , DNA/química , DNA/genética , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Polimerização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Moldes Genéticos , Proteínas Virais/química , Proteínas Virais/genética
4.
Mol Cell ; 46(1): 3-4, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500734

RESUMO

In this issue of Molecular Cell, Walmacq et al. (2012) show that bypass of UV photodimers by RNA polymerase II during transcription unexpectedly contributes to survival following UV irradiation; this process may clear the way for transcription-coupled repair of DNA damage.

5.
Biochemistry ; 58(45): 4466-4479, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659895

RESUMO

Recent structural studies of the bacteriophage T7 DNA replication system have shed light on how multiple proteins assemble to copy two antiparallel DNA strands. In T7, acidic C-terminal tails of both the primase-helicase and single-stranded DNA binding protein bind to two basic patches on the DNA polymerase to aid in replisome assembly, processivity, and coordinated DNA synthesis. Although these electrostatic interactions are essential for DNA replication, the molecular details for how these tails bind the polymerase are unknown. We have determined an X-ray crystal structure of the T7 DNA polymerase bound to both a primer/template DNA and a peptide that mimics the C-terminal tail of the primase-helicase. The structure reveals that the essential C-terminal phenylalanine of the tail binds to a hydrophobic pocket that is surrounded by positive charge on the surface of the polymerase. We show that alterations of polymerase residues that engage the tail lead to defects in viral replication. In the structure, we also observe dTTP bound in the exonuclease active site and stacked against tryptophan 160. Using both primer/extension assays and high-throughput sequencing, we show how mutations in the exonuclease active site lead to defects in mismatch repair and an increase in the level of mutagenesis of the T7 genome. Finally, using small-angle X-ray scattering, we provide the first solution structures of a complex between the single-stranded DNA binding protein and the DNA polymerase and show how a single-stranded DNA binding protein dimer engages both one and two copies of DNA polymerase.


Assuntos
Bacteriófago T7/fisiologia , DNA Polimerase Dirigida por DNA/química , Proteínas Virais/química , Bacteriófago T7/química , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/química , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Ligação Proteica , Eletricidade Estática , Proteínas Virais/metabolismo , Replicação Viral
6.
Mol Cell ; 35(1): 105-15, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19595720

RESUMO

Rad51 is a DNA recombinase functioning in the repair of DNA double-strand breaks and the generation of genetic diversity by homologous recombination (HR). In the presence of ATP, Rad51 self-assembles into an extended polymer on single-stranded DNA to catalyze strand exchange. Inappropriate HR causes genomic instability, and it is normally prevented by remodeling enzymes that antagonize the activities of Rad51 nucleoprotein filaments. In yeast, the Srs2 helicase/translocase suppresses HR by clearing Rad51 polymers from single-stranded DNA. We have examined the mechanism of disassembly of Rad51 nucleoprotein filaments by Srs2 and find that a physical interaction between Rad51 and the C-terminal region of Srs2 triggers ATP hydrolysis within the Rad51 filament, causing Rad51 to dissociate from DNA. This allosteric mechanism explains the biological specialization of Srs2 as a DNA motor protein that antagonizes HR.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Carbocianinas/química , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Eletroforese em Gel de Poliacrilamida , Fluorescência , Hidrólise , Cinética , Mutação , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Rad51 Recombinase/química , Rad51 Recombinase/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 43(14): 7021-31, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130724

RESUMO

Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligases/metabolismo , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/química , Humanos , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Xenopus , Dedos de Zinco
8.
J Biol Chem ; 290(6): 3775-83, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25477519

RESUMO

The posttranslational modification of proteins with poly(ADP-ribose) (PAR) regulates protein-protein interactions in DNA repair, gene expression, chromatin structure, and cell fate determination. The PAR polymerase PARP1 binds to damaged chromatin and synthesizes PAR chains to signal DNA damage and recruit the DNA repair scaffold, XRCC1. Pharmacological blockade of PARP1 enzymatic activity impairs XRCC1-dependent repair of DNA damage and selectively kills cancer cells lacking other DNA repair functions. As such, PARP inhibitors are promising new therapies for repair-deficient tumors such as BRCA mutated breast cancers. Although the XRCC1-PARP1 complex is relevant to the proposed therapeutic mechanism of PARP inhibitors, the physical makeup and dynamics of this complex are not well characterized at the molecular level. Here we describe a fluorescence-based, real-time assay that quantitatively monitors interactions between PARylated PARP1 and XRCC1. Using this assay, we show that the PAR posttranslational modification by itself is a high affinity ligand for XRCC1, requiring a minimum chain length of 7 ADP-ribose units in the oligo(ADP-ribose) ligand for a stable interaction with XRCC1. This discrete binding interface enables the PAR glycohydrolase (PARG) to completely disassemble the PARP1-XRCC1 complex without assistance from a mono(ADP-ribose) glycohydrolase. Our quantitative, real-time assay of PAR-dependent protein-protein interactions and PAR turnover by PARG is an excellent tool for high-throughput screening to identify pharmacological modulators of PAR metabolism that may be useful therapeutic alternatives to PARP inhibitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glicosídeo Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Adenosina Difosfato Ribose/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/química , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Especificidade por Substrato , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
9.
J Biol Chem ; 290(19): 12300-12, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25833945

RESUMO

The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.


Assuntos
Proteínas 14-3-3/metabolismo , Quebras de DNA de Cadeia Dupla , Exodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , DNA/genética , Reparo do DNA , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Xenopus
10.
Biochemistry ; 52(23): 4026-36, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23675753

RESUMO

Replisomes are multiprotein complexes that coordinate the synthesis of leading and lagging DNA strands to increase the replication efficiency and reduce DNA strand breaks caused by stalling of replication forks. The bacteriophage T7 replisome is an economical machine that requires only four proteins for processive, coupled synthesis of two DNA strands. Here we characterize a complex between T7 primase-helicase and DNA polymerase on DNA that was trapped during the initiation of Okazaki fragment synthesis from an RNA primer. This priming complex consists of two DNA polymerases and a primase-helicase hexamer that assemble on the DNA template in an RNA-dependent manner. The zinc binding domain of the primase-helicase is essential for trapping the RNA primer in complex with the polymerase, and a unique loop located on the thumb of the polymerase also stabilizes this primer extension complex. Whereas one of the polymerases engages the primase-helicase and RNA primer on the lagging strand of a model replication fork, the second polymerase in the complex is also functional and can bind a primed template DNA. These results indicate that the T7 primase-helicase specifically engages two copies of DNA polymerase, which would allow the coordination of leading and lagging strand synthesis at a replication fork. Assembly of the T7 replisome is driven by intimate interactions between the DNA polymerase and multiple subunits of the primase-helicase hexamer.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Substituição de Aminoácidos , Bacteriófago T7/genética , Sequência de Bases , Domínio Catalítico , DNA/química , DNA Primase/genética , DNA Viral/química , Substâncias Macromoleculares/química , Mutagênese Sítio-Dirigida , Polinucleotídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína
11.
J Biol Chem ; 287(46): 39233-44, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22992732

RESUMO

XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.


Assuntos
Enzimas Reparadoras do DNA/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sobrevivência Celular , Dano ao DNA , DNA Ligases/metabolismo , Regulação da Expressão Gênica , Humanos , Cinética , Microscopia Confocal/métodos , Mutação , Proteínas Nucleares/química , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , Treonina/química , Técnicas do Sistema de Duplo-Híbrido , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
12.
Biochemistry ; 50(19): 4038-45, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21466233

RESUMO

Protein--protein interactions are ubiquitous and essential for most biological processes. Although new proteomic technologies have generated large catalogs of interacting proteins, considerably less is known about these interactions at the molecular level, information that would aid in predicting protein interactions, designing therapeutics to alter these interactions, and understanding the effects of disease-producing mutations. Here we describe mapping the interacting surfaces of the bacterial toxin SPN (Streptococcus pyogenes NAD(+) hydrolase) in complex with its antitoxin IFS (immunity factor for SPN) by using hydrogen-deuterium amide exchange and electrospray ionization mass spectrometry. This approach affords data in a relatively short time for small amounts of protein, typically 5-7 pmol per analysis. The results show a good correspondence with a recently determined crystal structure of the IFS--SPN complex but additionally provide strong evidence for a folding transition of the IFS protein that accompanies its binding to SPN. The outcome shows that mass-based chemical footprinting of protein interaction surfaces can provide information about protein dynamics that is not easily obtained by other methods and can potentially be applied to large, multiprotein complexes that are out of range for most solution-based methods of biophysical analysis.


Assuntos
Antitoxinas/química , Antitoxinas/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Streptococcus pyogenes/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Medição da Troca de Deutério , Ligação Proteica , Dobramento de Proteína , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
13.
J Biol Chem ; 285(6): 3705-3712, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19940136

RESUMO

The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Transdução de Sinais , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Sequência de Aminoácidos , Animais , Asparagina/genética , Asparagina/metabolismo , Sítios de Ligação/genética , Células CHO , Linhagem Celular , Células Cultivadas , Cricetinae , Cricetulus , Dano ao DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endonucleases/química , Endonucleases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Spodoptera , Transfecção , Tirosina/genética , Tirosina/metabolismo , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/genética
14.
EMBO J ; 26(22): 4768-76, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17948053

RESUMO

The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/química , Peptídeos/química , Proteína de Xeroderma Pigmentoso Grupo A/química , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
15.
Nature ; 435(7045): 1059-66, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15973401

RESUMO

Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage lambda to integrate or excise its genome into and out of the host chromosome. lambda recombination is carried out by the bacteriophage-encoded integrase protein (lambda-int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of lambda-int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of lambda-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.


Assuntos
Bacteriófago lambda/enzimologia , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Integrases/química , Integrases/metabolismo , Recombinação Genética/genética , Regulação Alostérica , Sítios de Ligação Microbiológicos/genética , Sequência de Bases , Catálise , Cristalografia por Raios X , DNA Cruciforme/genética , Isomerismo , Modelos Moleculares , Conformação de Ácido Nucleico , Maleabilidade , Conformação Proteica , Relação Estrutura-Atividade
16.
Biochemistry ; 49(29): 6165-76, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20518483

RESUMO

Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.


Assuntos
DNA Ligases/química , DNA/química , Modelos Moleculares , Poli(ADP-Ribose) Polimerases/química , Dedos de Zinco , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , DNA Ligase Dependente de ATP , DNA Ligases/genética , Humanos , Dados de Sequência Molecular , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a Poli-ADP-Ribose , Conformação Proteica , Espalhamento de Radiação , Proteínas de Xenopus
17.
Mol Cell Biol ; 27(8): 3098-108, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17296736

RESUMO

The eleven Fanconi anemia (FA) proteins cooperate in a novel pathway required for the repair of DNA cross-links. Eight of the FA proteins (A, B, C, E, F, G, L, and M) form a core enzyme complex, required for the monoubiquitination of FANCD2 and the assembly of FANCD2 nuclear foci. Here, we show that, in response to DNA damage, Chk1 directly phosphorylates the FANCE subunit of the FA core complex on two conserved sites (threonine 346 and serine 374). Phosphorylated FANCE assembles in nuclear foci and colocalizes with FANCD2. A nonphosphorylated mutant form of FANCE (FANCE-T346A/S374A), when expressed in a FANCE-deficient cell line, allows FANCD2 monoubiquitination, FANCD2 foci assembly, and normal S-phase progression. However, the mutant FANCE protein fails to complement the mitomycin C hypersensitivity of the transfected cells. Taken together, these results elucidate a novel role of Chk1 in the regulation of the FA/BRCA pathway and in DNA cross-link repair. Chk1-mediated phosphorylation of FANCE is required for a function independent of FANCD2 monoubiquitination.


Assuntos
Proteína BRCA1/metabolismo , Proteína do Grupo de Complementação E da Anemia de Fanconi/metabolismo , Anemia de Fanconi/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Sequência Conservada , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação E da Anemia de Fanconi/química , Células HeLa , Humanos , Mitomicina/farmacologia , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Ubiquitina/metabolismo
18.
Nature ; 432(7016): 473-8, 2004 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-15565146

RESUMO

The end-joining reaction catalysed by DNA ligases is required by all organisms and serves as the ultimate step of DNA replication, repair and recombination processes. One of three well characterized mammalian DNA ligases, DNA ligase I, joins Okazaki fragments during DNA replication. Here we report the crystal structure of human DNA ligase I (residues 233 to 919) in complex with a nicked, 5' adenylated DNA intermediate. The structure shows that the enzyme redirects the path of the double helix to expose the nick termini for the strand-joining reaction. It also reveals a unique feature of mammalian ligases: a DNA-binding domain that allows ligase I to encircle its DNA substrate, stabilizes the DNA in a distorted structure, and positions the catalytic core on the nick. Similarities in the toroidal shape and dimensions of DNA ligase I and the proliferating cell nuclear antigen sliding clamp are suggestive of an extensive protein-protein interface that may coordinate the joining of Okazaki fragments.


Assuntos
Dano ao DNA , DNA Ligases/química , DNA Ligases/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Sítios de Ligação , Cristalização , Cristalografia por Raios X , DNA Ligase Dependente de ATP , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Nat Struct Mol Biol ; 11(8): 784-90, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15235589

RESUMO

Ultraviolet-induced DNA damage poses a lethal block to replication. To understand the structural basis for this, we determined crystal structures of a replicative DNA polymerase from bacteriophage T7 in complex with nucleotide substrates and a DNA template containing a cis-syn cyclobutane pyrimidine dimer (CPD). When the 3' thymine is the templating base, the CPD is rotated out of the polymerase active site and the fingers subdomain adopts an open orientation. When the 5' thymine is the templating base, the CPD lies within the polymerase active site where it base-pairs with the incoming nucleotide and the 3' base of the primer, while the fingers are in a closed conformation. These structures reveal the basis for the strong block of DNA replication that is caused by this photolesion.


Assuntos
Bacteriófago T7/química , DNA Polimerase Dirigida por DNA/química , Sítios de Ligação , Cristalografia por Raios X , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Dimerização , Modelos Químicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Pirimidinas/química , Timina/química , Raios Ultravioleta
20.
Curr Opin Struct Biol ; 16(1): 42-50, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16368232

RESUMO

The integrase protein of bacteriophage lambda (Int) catalyzes site-specific recombination between lambda phage and Escherichia coli genomes. Int is a tyrosine recombinase that binds to DNA core sites via a C-terminal catalytic domain and to a collection of arm DNA sites, distant from the site of recombination, via its N-terminal domain. The arm sites, in conjunction with accessory DNA-bending proteins, provide a means of regulating the efficiency and directionality of Int-catalyzed recombination. Recent crystal structures of lambda Int tetramers bound to synaptic and Holliday junction intermediates, together with new biochemical data, suggest a mechanism for the allosteric control of the recombination reaction through arm DNA binding interactions.


Assuntos
Bacteriófago lambda/genética , DNA Viral/fisiologia , Integrases/fisiologia , Recombinação Genética , Integração Viral/fisiologia , Bacteriófago lambda/enzimologia , Integrases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA