RESUMO
The cluster [Co38As12(CO)50]4- was obtained by pyrolysis of [Co6As(CO)16]-. The metal cage features a closed-packed core inside a Co/As shell that progressively deforms from a cubic face-centered symmetry. The redox and acid-base reactivities were determined by cyclic voltammetry and spectrophotometric titrations. The calculated electron density revealed the shell-constrained distribution of the atomic charges, induced by the presence of arsenic.
Assuntos
Metais , OxirreduçãoRESUMO
Direct (hetero)arylation (DHA) is playing a key role in improving the efficiency and atom economy of C-C cross coupling reactions, so has impacts in pharmaceutical and materials chemistry. Current research focuses on further improving the generality, efficiency and selectivity of the method through careful tuning of the reaction conditions and the catalytic system. Comparatively fewer studies are dedicated to the replacement of the high-boiling-point organic solvents dominating the field and affecting the overall sustainability of the method. We show herein that the use of a 9:1 v/v emulsion of an aqueous Kolliphor 2 wt% solution while having toluene as the reaction medium enables the preparation of relevant examples of thiophene-containing π-conjugated building blocks in high yield and purity.
Assuntos
Técnicas de Química Sintética/métodos , Hidrocarbonetos Aromáticos/química , Polímeros/química , Tiofenos/química , Água/química , Ar , Catálise , Estrutura MolecularRESUMO
Friedreich ataxia (FRDA) is caused by the reduced expression of the mitochondrial protein frataxin (FXN) due to an intronic GAA trinucleotide repeat expansion in the FXN gene. Although FRDA has no cure and few treatment options, there is research dedicated to finding an agent that can curb disease progression and address symptoms as neurobehavioral deficits, muscle endurance, and heart contractile dysfunctions. Because oxidative stress and mitochondrial dysfunctions are implicated in FRDA, we demonstrated the systemic delivery of catalysts activity of gold cluster superstructures (Au8-pXs) to improve cell response to mitochondrial reactive oxygen species and thereby alleviate FRDA-related pathology in mesenchymal stem cells from patients with FRDA. We also found that systemic injection of Au8-pXs ameliorated motor function and cardiac contractility of YG8sR mouse model that recapitulates the FRDA phenotype. These effects were associated to long-term improvement of mitochondrial functions and antioxidant cell responses. We related these events to an increased expression of frataxin, which was sustained by reduced autophagy. Overall, these results encourage further optimization of Au8-pXs in experimental clinical strategies for the treatment of FRDA.
Assuntos
Ataxia de Friedreich , Animais , Modelos Animais de Doenças , Ouro , Humanos , Camundongos , Espécies Reativas de Oxigênio , Expansão das Repetições de TrinucleotídeosRESUMO
The efficient production of energy from low-temperature heat sources (below 100 °C) would open the doors to the exploitation of a huge amount of heat sources such as solar, geothermal, and industrial waste heat. Thermal regenerable redox-flow batteries (TRBs) are flow batteries that store energy in concentration cells that can be recharged by distillation at temperature <100 °C, exploiting low-temperature heat sources. Using a single membrane cell setup and a suitable redox couple (LiBr/Br2 ), a TRB has been developed that is able to store a maximum volumetric energy of 25.5â Wh dm-3 , which can be delivered at a power density of 8â W m-2 . After discharging 30 % of the volumetric energy, a total heat-to-electrical energy conversion efficiency of 4 % is calculated, the highest value reported so far in harvesting of low-temperature heat.
RESUMO
An alternating naphthalene dianhydride bithiophene copolymer (PNDAT2) is prepared by a combined direct arylation polycondensation and the latent pigment approach. PNDAT2 is the first reported example of an alternating conjugated polymer containing naphthalene dianhydride, the oxo-analogue of naphthalene diimide often used in electron-acceptor conjugated polymers. PNDAT2 is resistant to organic solvents and can be generated directly as film by thermal treatment of the soluble tetraester precursor PNTET2. PNDAT2 is characterized by a LUMO level of -3.9â eV, similar to that of established naphthalene diimide containing soluble copolymers. This route to insoluble electron acceptor copolymers by thermal cleavage of soluble precursors is an alternative to classical cross-linking or orthogonal processing strategies.
RESUMO
Invited for this month's cover are the collaborating groups of Prof. Luca Beverina from the University of Molani-Bicocca, Italy and Prof. Michael Sommer from Chemnitz University of Technology, Germany. The front cover shows the thermally induced transformation of a soluble and electron-rich naphthalene tetraester-bithiophene copolymer into the corresponding insoluble and electron-poor naphthalenetetraanhydride derivative. The combination of monochromatic squares, inspired by the work of Josef Albers, shows the color change involved in the transformation. Read the full text of the article at 10.1002/cplu.201900210.