Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(1): 3-5, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32243830

RESUMO

Whipple et al., 2020 describe that, in neurons, a dense cluster of maternally expressed microRNAs post-transcriptionally downregulates several imprinted genes expressed from the paternal genome-an antagonistic mechanism that modulates neuronal functions and provides insights into the evolution of genomic imprinting.


Assuntos
MicroRNAs , Redes Reguladoras de Genes , Genoma , Impressão Genômica , Neurônios
2.
EMBO J ; 42(12): e110286, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37082862

RESUMO

Despite advances in the identification of chromatin regulators and genome interactions, the principles of higher-order chromatin structure have remained elusive. Here, we applied FLIM-FRET microscopy to analyse, in living cells, the spatial organisation of nanometre range proximity between nucleosomes, which we called "nanocompaction." Both in naive embryonic stem cells (ESCs) and in ESC-derived epiblast-like cells (EpiLCs), we find that, contrary to expectations, constitutive heterochromatin is much less compacted than bulk chromatin. The opposite was observed in fixed cells. HP1α knockdown increased nanocompaction in living ESCs, but this was overridden by loss of HP1ß, indicating the existence of a dynamic HP1-dependent low compaction state in pluripotent cells. Depletion of H4K20me2/3 abrogated nanocompaction, while increased H4K20me3 levels accompanied the nuclear reorganisation during EpiLCs induction. Finally, the knockout of the nuclear cellular-proliferation marker Ki-67 strongly reduced both interphase and mitotic heterochromatin nanocompaction in ESCs. Our data indicate that, contrary to prevailing models, heterochromatin is not highly compacted at the nanoscale but resides in a dynamic low nanocompaction state that depends on H4K20me2/3, the balance between HP1 isoforms, and Ki-67.


Assuntos
Proteínas Cromossômicas não Histona , Heterocromatina , Heterocromatina/genética , Antígeno Ki-67/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/química , Cromatina , Células-Tronco Embrionárias
3.
Nucleic Acids Res ; 52(11): 6183-6200, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38613389

RESUMO

The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.


Assuntos
Proteínas de Ligação ao Cálcio , Diferenciação Celular , Impressão Genômica , RNA Longo não Codificante , Animais , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares , Proteínas da Gravidez , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Biochem Soc Trans ; 52(3): 973-986, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38775198

RESUMO

Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells. At several imprinted domains, differentially methylated regions show allelic binding of the insulator protein CTCF, and linked focal retention of cohesin, at the non-methylated allele only. This generates differential patterns of chromatin looping between the parental chromosomes, already in the early embryo, and thereby facilitates the allelic gene expression. Recent research evokes also the opposite scenario, in which allelic transcription contributes to the differential genome organization, similarly as reported for imprinted X chromosome inactivation. This may occur through epigenetic effects on CTCF binding, through structural effects of RNA Polymerase II, or through imprinted long non-coding RNAs that have chromatin repressive functions. The emerging picture is that epigenetically-controlled differential genome architecture precedes and facilitates imprinted gene expression during development, and that at some domains, conversely, the mono-allelic gene expression also influences genome architecture.


Assuntos
Cromatina , Impressão Genômica , Humanos , Animais , Cromatina/metabolismo , Metilação de DNA , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Genoma , Epigênese Genética , Alelos
5.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
6.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686455

RESUMO

Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.


Assuntos
RNA Longo não Codificante , Humanos , Animais , RNA Longo não Codificante/genética , Alelos , Embrião de Mamíferos , Epigênese Genética , Homeostase , Mamíferos/genética
7.
J Theor Biol ; 550: 111222, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35843440

RESUMO

BACKGROUND: The cyclic nucleotides cAMP and cGMP inhibit platelet activation. Different platelet signaling modules work together. We develop here a modelling framework to integrate different signaling modules and apply it to platelets. RESULTS: We introduce a novel standardized bilinear coupling mechanism allowing sub model debugging and standardization of coupling with optimal data driven modelling by methods from optimization. Besides cAMP signaling our model considers specific cGMP effects including external stimuli by drugs. Moreover, the output of the cGMP module serves as input for a modular model of VASP phosphorylation and for the activity of cAMP and cGMP pathways in platelets. Experimental data driven modeling allows us to design models with quantitative output. We use the condensed information about involved regulation and system responses for modeling drug effects and obtaining optimal experimental settings. Stepwise further validation of our model is given by direct experimental data. CONCLUSIONS: We present a general framework for model integration using modules and their stimulus responses. We demonstrate it by a multi-modular model for platelet signaling focusing on cGMP and VASP phosphorylation. Moreover, this allows to estimate drug action on any of the inhibitory cyclic nucleotide pathways (cGMP, cAMP) and is supported by experimental data.


Assuntos
Plaquetas , AMP Cíclico , GMP Cíclico , Nucleotídeos Cíclicos , Fosfoproteínas , Fosforilação
8.
Trends Genet ; 34(12): 954-971, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217559

RESUMO

Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.


Assuntos
Alelos , Epigênese Genética , Expressão Gênica/genética , Mamíferos/genética , Animais , Impressão Genômica/genética , Receptores de Antígenos/genética , Receptores Odorantes/genética , Inativação do Cromossomo X/genética
9.
Biochem Soc Trans ; 49(4): 1867-1879, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34338292

RESUMO

Different classes of non-coding RNA (ncRNA) influence the organization of chromatin. Imprinted gene domains constitute a paradigm for exploring functional long ncRNAs (lncRNAs). Almost all express an lncRNA in a parent-of-origin dependent manner. The mono-allelic expression of these lncRNAs represses close by and distant protein-coding genes, through diverse mechanisms. Some control genes on other chromosomes as well. Interestingly, several imprinted chromosomal domains show a developmentally regulated, chromatin-based mechanism of imprinting with apparent similarities to X-chromosome inactivation. At these domains, the mono-allelic lncRNAs show a relatively stable, focal accumulation in cis. This facilitates the recruitment of Polycomb repressive complexes, lysine methyltranferases and other nuclear proteins - in part through direct RNA-protein interactions. Recent chromosome conformation capture and microscopy studies indicate that the focal aggregation of lncRNA and interacting proteins could play an architectural role as well, and correlates with close positioning of target genes. Higher-order chromatin structure is strongly influenced by CTCF/cohesin complexes, whose allelic association patterns and actions may be influenced by lncRNAs as well. Here, we review the gene-repressive roles of imprinted non-coding RNAs, particularly of lncRNAs, and discuss emerging links with chromatin architecture.


Assuntos
Cromatina/química , Impressão Genômica , Domínios Proteicos , RNA não Traduzido/química , Animais , Humanos , Conformação Proteica , Inativação do Cromossomo X
10.
PLoS Biol ; 16(12): e2005595, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540740

RESUMO

Genome editing occurs in the context of chromatin, which is heterogeneous in structure and function across the genome. Chromatin heterogeneity is thought to affect genome editing efficiency, but this has been challenging to quantify due to the presence of confounding variables. Here, we develop a method that exploits the allele-specific chromatin status of imprinted genes in order to address this problem in cycling mouse embryonic stem cells (mESCs). Because maternal and paternal alleles of imprinted genes have identical DNA sequence and are situated in the same nucleus, allele-specific differences in the frequency and spectrum of mutations induced by CRISPR-Cas9 can be unequivocally attributed to epigenetic mechanisms. We found that heterochromatin can impede mutagenesis, but to a degree that depends on other key experimental parameters. Mutagenesis was impeded by up to 7-fold when Cas9 exposure was brief and when intracellular Cas9 expression was low. In contrast, the outcome of mutagenic DNA repair was unaffected by chromatin state, with similar efficiencies of homology-directed repair (HDR) and deletion spectra on maternal and paternal chromosomes. Combined, our data show that heterochromatin imposes a permeable barrier that influences the kinetics, but not the endpoint, of CRISPR-Cas9 genome editing and suggest that therapeutic applications involving low-level Cas9 exposure will be particularly affected by chromatin status.


Assuntos
Reparo do DNA/fisiologia , Heterocromatina/genética , Heterocromatina/fisiologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/fisiologia , Mutagênese Insercional , Mutagênicos , Mutação/genética , Reparo de DNA por Recombinação/fisiologia , Deleção de Sequência
11.
Int J Obes (Lond) ; 44(1): 13-22, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554916

RESUMO

OBJECTIVES: To study DNA methylation at the C19MC locus in the placenta and its association with (1) parental body size, (2) transmission of haplotypes for the C19MC rs55765443 SNP, and (3) offspring's body size and/or body composition at birth and in childhood. SUBJECTS AND METHODS: Seventy-two pregnant women-infant pairs and 63 fathers were included in the study. Weight and height of mothers, fathers and newborns were registered during pregnancy or at birth (n = 72). Placental DNA methylation at the C19MC imprinting control region (ICR) was quantified by bisulfite pyrosequencing. Genotyping of the SNP was performed using restriction fragment length polymorphisms. The children's body size and composition were reassessed at age 6 years (n = 32). RESULTS: Lower levels of placental C19MC methylation were associated with increased body size of mother, specifically with higher pregestational and predelivery weights and height of the mother (ß from -0.294 to -0.371; R2 from 0.04 to 0.10 and all p < 0.019), and with higher weight, height, waist and hip circumferences, and fat mass of the child (ß from -0.428 to -0.552; R2 from 0.33 to 0.56 and all p < 0.009). Parental transmission of the SNP did not correlate with an altered placental methylation status at the C19MC ICR. CONCLUSIONS: Increased maternal size is associated with reduced placental C19MC methylation, which, in turn, relate to larger body size of the child.


Assuntos
Tamanho Corporal/genética , Cromossomos Humanos Par 19/genética , Metilação de DNA/genética , MicroRNAs/genética , Placenta/metabolismo , Adulto , Criança , Cromossomos Humanos Par 19/metabolismo , Pai , Feminino , Seguimentos , Humanos , Recém-Nascido , Masculino , MicroRNAs/metabolismo , Mães , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Adulto Jovem
13.
Nucleic Acids Res ; 46(10): 4950-4965, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29554304

RESUMO

Kleefstra syndrome, a disease with intellectual disability, autism spectrum disorders and other developmental defects is caused in humans by haploinsufficiency of EHMT1. Although EHMT1 and its paralog EHMT2 were shown to be histone methyltransferases responsible for deposition of the di-methylated H3K9 (H3K9me2), the exact nature of epigenetic dysfunctions in Kleefstra syndrome remains unknown. Here, we found that the epigenome of Ehmt1+/- adult mouse brain displays a marked increase of H3K9me2/3 which correlates with impaired expression of protocadherins, master regulators of neuronal diversity. Increased H3K9me3 was present already at birth, indicating that aberrant methylation patterns are established during embryogenesis. Interestingly, we found that Ehmt2+/- mice do not present neither the marked increase of H3K9me2/3 nor the cognitive deficits found in Ehmt1+/- mice, indicating an evolutionary diversification of functions. Our finding of increased H3K9me3 in Ehmt1+/- mice is the first one supporting the notion that EHMT1 can quench the deposition of tri-methylation by other Histone methyltransferases, ultimately leading to impaired neurocognitive functioning. Our insights into the epigenetic pathophysiology of Kleefstra syndrome may offer guidance for future developments of therapeutic strategies for this disease.


Assuntos
Caderinas/genética , Disfunção Cognitiva/metabolismo , Anormalidades Craniofaciais/metabolismo , Cardiopatias Congênitas/metabolismo , Histonas/metabolismo , Deficiência Intelectual/metabolismo , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 9/metabolismo , Disfunção Cognitiva/genética , Anormalidades Craniofaciais/psicologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Cardiopatias Congênitas/psicologia , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/psicologia , Lisina/metabolismo , Masculino , Metilação , Camundongos Knockout
14.
J Neurosci ; 38(45): 9768-9780, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30249793

RESUMO

cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant. Consequently, bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 mutants. In conclusion, our in vivo studies provide strong evidence that phosphorylation of the seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of Npr2-mediated cGMP signaling which affects physiological processes, such as axon bifurcation and bone growth.SIGNIFICANCE STATEMENT The branching of axons is a morphological hallmark of virtually all neurons. It allows an individual neuron to innervate different targets and to communicate with neurons located in different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2), a transmembrane guanylyl cyclase, is essential for the initiation of bifurcation of sensory axons when entering the spinal cord or the hindbrain. By using two genetically engineered mouse lines, we show that phosphorylation of specific serine and threonine residues in juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon bifurcation. These investigations might help to understand the regulation of Npr2 and its integration in intracellular signaling systems.


Assuntos
Axônios/fisiologia , Gânglios Sensitivos/fisiologia , Receptores do Fator Natriurético Atrial/fisiologia , Serina/metabolismo , Treonina/metabolismo , Animais , Feminino , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/fisiologia , Gravidez , Células Receptoras Sensoriais/fisiologia , Serina/genética , Treonina/genética
15.
Genome Res ; 26(2): 192-202, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26576615

RESUMO

The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2(-/-) embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development.


Assuntos
Metilação de DNA , Inativação Gênica , Histona-Lisina N-Metiltransferase/fisiologia , Sistema A de Transporte de Aminoácidos/genética , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/fisiologia , Análise de Sequência de DNA
16.
Gastroenterology ; 152(5): 1114-1125.e5, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28043906

RESUMO

BACKGROUND & AIMS: The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. METHODS: We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (GsaSMKO and SM22-CreERT2, induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. RESULTS: Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo-obstruction, compared with tissues from controls. CONCLUSIONS: Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Motilidade Gastrointestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Intestinos/fisiologia , Contração Muscular/genética , Músculo Liso/fisiologia , Actinas/metabolismo , Adulto , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cromograninas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP , Humanos , Íleo/metabolismo , Integrases , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Calponinas
17.
Chembiochem ; 19(12): 1312-1318, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29417721

RESUMO

Diazeniumdiolates (NONOates) are a class of nitric-oxide-releasing substances widely used in studies of NO/cGMP signalling. Because spatiotemporal control is highly desirable for such purposes, we have synthesised a new Npom-caged pyrrolidine NONOate. A kinetic analysis together with a Griess assay showed the photodependent release of NO with high quantum yield (UV light). In primary vascular smooth muscle cells (VSMCs), our compound was reliably able to induce fast increases in cGMP, as measured with a genetically encoded FRET-based cGMP sensor and further validated by the phosphorylation of the downstream target vasodilator-stimulated phosphoprotein (VASP). Thanks to their facile synthesis, good decaging kinetics and capability to activate cGMP signalling in a fast and efficient manner, Npom-protected NONOates allow for improved spatiotemporal control of NO/cGMP signalling.


Assuntos
Compostos Azo/farmacologia , GMP Cíclico/metabolismo , Músculo Liso Vascular/citologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Animais , Compostos Azo/química , Células Cultivadas , Camundongos Transgênicos , Modelos Moleculares , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/efeitos da radiação , Doadores de Óxido Nítrico/química , Pirrolidinas/química , Pirrolidinas/farmacologia , Raios Ultravioleta
18.
FASEB J ; 31(4): 1620-1638, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138039

RESUMO

LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , alfa-Defensinas/genética , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peixe-Zebra , alfa-Defensinas/metabolismo
19.
Nat Rev Genet ; 13(2): 97-109, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22215131

RESUMO

Epigenetic phenomena in animals and plants are mediated by DNA methylation and stable chromatin modifications. There has been considerable interest in whether environmental factors modulate the establishment and maintenance of epigenetic modifications, and could thereby influence gene expression and phenotype. Chemical pollutants, dietary components, temperature changes and other external stresses can indeed have long-lasting effects on development, metabolism and health, sometimes even in subsequent generations. Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems. These have implications for structuring future research and understanding disease and development.


Assuntos
Epigênese Genética , Interação Gene-Ambiente , Animais , Meio Ambiente , Humanos , Fenótipo , Plantas/genética
20.
Cereb Cortex ; 27(3): 2418-2433, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095822

RESUMO

In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Metilação de DNA , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Camundongos , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA