Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7993): 92-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057664

RESUMO

The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders1-4, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)-the largest public open-access human genome allele frequency reference dataset-and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.


Assuntos
Genoma Humano , Genômica , Modelos Genéticos , Mutação , Humanos , Acesso à Informação , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Frequência do Gene , Genoma Humano/genética , Mutação/genética , Seleção Genética
2.
Nature ; 604(7906): 509-516, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396579

RESUMO

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento , Esquizofrenia , Estudos de Casos e Controles , Exoma , Predisposição Genética para Doença/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
3.
Nature ; 581(7809): 444-451, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461652

RESUMO

Structural variants (SVs) rearrange large segments of DNA1 and can have profound consequences in evolution and human disease2,3. As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)4 have become integral in the interpretation of single-nucleotide variants (SNVs)5. However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25-29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage6. We also uncovered modest selection against noncoding SVs in cis-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings7. This SV resource is freely distributed via the gnomAD browser8 and will have broad utility in population genetics, disease-association studies, and diagnostic screening.


Assuntos
Doença/genética , Variação Genética , Genética Médica/normas , Genética Populacional/normas , Genoma Humano/genética , Feminino , Testes Genéticos , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único/genética , Grupos Raciais/genética , Padrões de Referência , Seleção Genética , Sequenciamento Completo do Genoma
4.
Nature ; 581(7809): 434-443, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461654

RESUMO

Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.


Assuntos
Exoma/genética , Genes Essenciais/genética , Variação Genética/genética , Genoma Humano/genética , Adulto , Encéfalo/metabolismo , Doenças Cardiovasculares/genética , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação com Perda de Função/genética , Masculino , Taxa de Mutação , Pró-Proteína Convertase 9/genética , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
9.
Hum Mutat ; 41(2): 403-411, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31660661

RESUMO

We present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant. Muscle-derived RNA studies of three individuals confirmed mis-splicing induced by the c.39974-11T>G variant; in-frame exon 214 skipping or use of a cryptic 3' splice-site effecting a frameshift. Confounding interpretation of pathogenicity is the absence of exons 213-217 within the described skeletal muscle TTN N2A isoform. However, RNA-sequencing from 365 adult human gastrocnemius samples revealed that 56% specimens predominantly include exons 213-217 in TTN transcripts (inclusion rate ≥66%). Further, RNA-sequencing of five fetal muscle samples confirmed that 4/5 specimens predominantly include exons 213-217 (fifth sample inclusion rate 57%). Contractures improved significantly with age for four individuals, which may be linked to decreased expression of pathogenic fetal transcripts. Our study extends emerging evidence supporting a vital developmental role for TTN isoforms containing metatranscript-only exons.


Assuntos
Processamento Alternativo , Artrogripose/diagnóstico , Artrogripose/genética , Conectina/genética , Genes Recessivos , Predisposição Genética para Doença , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Mutação , Linhagem , Fenótipo , Radiografia
10.
Bioinformatics ; 35(7): 1174-1180, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169785

RESUMO

MOTIVATION: De novo mutations (i.e. newly occurring mutations) are a pre-dominant cause of sporadic dominant monogenic diseases and play a significant role in the genetics of complex disorders. De novo mutation studies also inform population genetics models and shed light on the biology of DNA replication and repair. Despite the broad interest, there is room for improvement with regard to the accuracy of de novo mutation calling. RESULTS: We designed novoCaller, a Bayesian variant calling algorithm that uses information from read-level data both in the pedigree and in unrelated samples. The method was extensively tested using large trio-sequencing studies, and it consistently achieved over 97% sensitivity. We applied the algorithm to 48 trio cases of suspected rare Mendelian disorders as part of the Brigham Genomic Medicine gene discovery initiative. Its application resulted in a significant reduction in the resources required for manual inspection and experimental validation of the calls. Three de novo variants were found in known genes associated with rare disorders, leading to rapid genetic diagnosis of the probands. Another 14 variants were found in genes that are likely to explain the phenotype, and could lead to novel disease-gene discovery. AVAILABILITY AND IMPLEMENTATION: Source code implemented in C++ and Python can be downloaded from https://github.com/bgm-cwg/novoCaller. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Algoritmos , Teorema de Bayes , Linhagem
11.
Bioinformatics ; 35(21): 4478-4479, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086968

RESUMO

MOTIVATION: The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same gene. However, most of the existing variant annotation tools do not reference the score range of benign population variants on gene level. RESULTS: We present a web-application, Variant Score Ranker, which enables users to rapidly annotate variants and perform gene-specific variant score ranking on the population level. We also provide an intuitive example of how gene- and population-calibrated variant ranking scores can improve epilepsy variant prioritization. AVAILABILITY AND IMPLEMENTATION: http://vsranker.broadinstitute.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mutação de Sentido Incorreto , Software
12.
Proc Natl Acad Sci U S A ; 114(52): E11257-E11266, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229813

RESUMO

The CRISPR-Cas9 nuclease system holds enormous potential for therapeutic genome editing of a wide spectrum of diseases. Large efforts have been made to further understanding of on- and off-target activity to assist the design of CRISPR-based therapies with optimized efficacy and safety. However, current efforts have largely focused on the reference genome or the genome of cell lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity. Here, we examine the effect of human genetic variation on both on- and off-target specificity. Specifically, we utilize 7,444 whole-genome sequences to examine the effect of variants on the targeting specificity of ∼3,000 gRNAs across 30 therapeutically implicated loci. We demonstrate that human genetic variation can alter the off-target landscape genome-wide including creating and destroying protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) can result in altered on-target sites and novel potent off-target sites, which can predispose patients to treatment failure and adverse effects, respectively; however, these events are rare. Taken together, these data highlight the importance of considering individual genomes for therapeutic genome-editing applications for the design and evaluation of CRISPR-based therapies to minimize risk of treatment failure and/or adverse outcomes.


Assuntos
Sistemas CRISPR-Cas , Loci Gênicos , Terapia Genética , Polimorfismo de Nucleotídeo Único , RNA Guia de Cinetoplastídeos/genética , Humanos
13.
Am J Hum Genet ; 97(6): 775-89, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26581902

RESUMO

The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10(-8) per base per generation and a rate of 1.26 × 10(-9) for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10(-6). We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction.


Assuntos
Genoma Humano , Mutação em Linhagem Germinativa , Modelos Genéticos , Taxa de Mutação , Alelos , Frequência do Gene , Haplótipos , Humanos , Mutação INDEL , Modelos Lineares , Recombinação Genética
14.
Genome Res ; 25(6): 792-801, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883321

RESUMO

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Assuntos
Variação Genética , Genoma Humano , Alelos , Sequência de Aminoácidos , Feminino , Genômica , Haplótipos , Humanos , Mutação INDEL , Masculino , Dados de Sequência Molecular , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Hum Mutat ; 38(11): 1534-1541, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28714244

RESUMO

The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 × 10-15 ). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Alelos , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Estudos de Casos e Controles , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Taxa de Mutação , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
16.
Hum Mol Genet ; 23(22): 6081-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24957906

RESUMO

Birdshot chorioretinopathy (BSCR) is a rare form of autoimmune uveitis that can lead to severe visual impairment. Intriguingly, >95% of cases carry the HLA-A29 allele, which defines the strongest documented HLA association for a human disease. We have conducted a genome-wide association study in 96 Dutch and 27 Spanish cases, and 398 unrelated Dutch and 380 Spanish controls. Fine-mapping the primary MHC association through high-resolution imputation at classical HLA loci, identified HLA-A*29:02 as the principal MHC association (odds ratio (OR) = 157.5, 95% CI 91.6-272.6, P = 6.6 × 10(-74)). We also identified two novel susceptibility loci at 5q15 near ERAP2 (rs7705093; OR = 2.3, 95% CI 1.7-3.1, for the T allele, P = 8.6 × 10(-8)) and at 14q32.31 in the TECPR2 gene (rs150571175; OR = 6.1, 95% CI 3.2-11.7, for the A allele, P = 3.2 × 10(-8)). The association near ERAP2 was confirmed in an independent British case-control samples (combined meta-analysis P = 1.7 × 10(-9)). Functional analyses revealed that the risk allele of the polymorphism near ERAP2 is strongly associated with high mRNA and protein expression of ERAP2 in B cells. This study further defined an extremely strong MHC risk component in BSCR, and detected evidence for a novel disease mechanism that affects peptide processing in the endoplasmic reticulum.


Assuntos
Aminopeptidases/genética , Coriorretinite/genética , Estudo de Associação Genômica Ampla , Alelos , Aminopeptidases/metabolismo , Coriorretinopatia de Birdshot , Estudos de Casos e Controles , Coriorretinite/metabolismo , Feminino , Antígenos HLA-A/genética , Haplótipos , Humanos , Masculino , População Branca/genética
17.
PLoS Genet ; 9(2): e1003301, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468643

RESUMO

Large-scale population sequencing studies provide a complete picture of human genetic variation within the studied populations. A key challenge is to identify, among the myriad alleles, those variants that have an effect on molecular function, phenotypes, and reproductive fitness. Most non-neutral variation consists of deleterious alleles segregating at low population frequency due to incessant mutation. To date, studies characterizing selection against deleterious alleles have been based on allele frequency (testing for a relative excess of rare alleles) or ratio of polymorphism to divergence (testing for a relative increase in the number of polymorphic alleles). Here, starting from Maruyama's theoretical prediction (Maruyama T (1974), Am J Hum Genet USA 6:669-673) that a (slightly) deleterious allele is, on average, younger than a neutral allele segregating at the same frequency, we devised an approach to characterize selection based on allelic age. Unlike existing methods, it compares sets of neutral and deleterious sequence variants at the same allele frequency. When applied to human sequence data from the Genome of the Netherlands Project, our approach distinguishes low-frequency coding non-synonymous variants from synonymous and non-coding variants at the same allele frequency and discriminates between sets of variants independently predicted to be benign or damaging for protein structure and function. The results confirm the abundance of slightly deleterious coding variation in humans.


Assuntos
Alelos , Deriva Genética , Variação Genética , Genética Populacional , Seleção Genética , Evolução Molecular , Frequência do Gene , Genoma Humano , Humanos , Modelos Teóricos , Deleção de Sequência
18.
Nat Genet ; 56(1): 152-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057443

RESUMO

Recessive diseases arise when both copies of a gene are impacted by a damaging genetic variant. When a patient carries two potentially causal variants in a gene, accurate diagnosis requires determining that these variants occur on different copies of the chromosome (that is, are in trans) rather than on the same copy (that is, in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. Here we developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in the Genome Aggregation Database (v2, n = 125,748 exomes). Our approach estimates phase with 96% accuracy, both in trio data and in patients with Mendelian conditions and presumed causal compound heterozygous variants. We provide a public resource of phasing estimates for coding variants and counts per gene of rare variants in trans that can aid interpretation of rare co-occurring variants in the context of recessive disease.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Exoma/genética , Sequenciamento do Exoma , Genótipo
19.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993580

RESUMO

Recessive diseases arise when both the maternal and the paternal copies of a gene are impacted by a damaging genetic variant in the affected individual. When a patient carries two different potentially causal variants in a gene for a given disorder, accurate diagnosis requires determining that these two variants occur on different copies of the chromosome (i.e., are in trans) rather than on the same copy (i.e. in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. We developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in exome sequencing data from the Genome Aggregation Database (gnomAD v2, n=125,748). When applied to trio data where phase can be determined by transmission, our approach estimates phase with 95.7% accuracy and remains accurate even for very rare variants (allele frequency < 1×10-4). We also correctly phase 95.9% of variant pairs in a set of 293 patients with Mendelian conditions carrying presumed causal compound heterozygous variants. We provide a public resource of phasing estimates from gnomAD, including phasing estimates for coding variants across the genome and counts per gene of rare variants in trans, that can aid interpretation of rare co-occurring variants in the context of recessive disease.

20.
Lancet Infect Dis ; 22(6): 835-844, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35202600

RESUMO

BACKGROUND: Hand hygiene is at the core of effective infection prevention and control (IPC) programmes. 10 years after the development of the WHO Multimodal Hand Hygiene Improvement Strategy, we aimed to ascertain the level of hand hygiene implementation and its drivers in health-care facilities through a global WHO survey. METHODS: From Jan 16 to Dec 31, 2019, IPC professionals were invited through email and campaigns to complete the online Hand Hygiene Self-Assessment Framework (HHSAF). A geospatial clustering algorithm selected unique health-care facilities responses and post-stratification weighting was applied to improve representativeness. Weighted median HHSAF scores and IQR were reported. Drivers of the HHSAF score were determined through a generalised estimation equation. FINDINGS: 3206 unique responses from 90 countries (46% WHO Member States) were included. The HHSAF score indicated an intermediate hand hygiene implementation level (350 points, IQR 248-430), which was positively associated with country income level and health-care facility funding structure. System Change had the highest score (85 points, IQR 55-100), whereby alcohol-based hand rub at the point of care has become standard practice in many health-care facilities, especially in high-income countries. Institutional Safety Climate had the lowest score (55 points, IQR 35-75). From 2015 to 2019, the median HHSAF score in health-care facilities participating in both HHSAF surveys (n=190) stagnated. INTERPRETATION: Most health-care facilities had an intermediate level of hand hygiene implementation or higher, for which health-care facility funding and country income level were important drivers. Availability of resources, leadership, and organisational support are key elements to further improve quality of care and provide access to safe care for all. FUNDING: WHO, Geneva University Hospitals and Faculty of Medicine, and WHO Collaborating Center on Patient Safety, Geneva, Switzerland.


Assuntos
Infecção Hospitalar , Higiene das Mãos , Infecção Hospitalar/prevenção & controle , Fidelidade a Diretrizes , Desinfecção das Mãos , Higiene das Mãos/métodos , Instalações de Saúde , Humanos , Controle de Infecções/métodos , Autoavaliação (Psicologia) , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA