Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(11): 4594-4607, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394908

RESUMO

The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the ß6/ß7 loop epitope exposed exclusively in misfolded SOD1. The ß6/ß7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed ß6/ß7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Epitopos , Fenótipo , Dobramento de Proteína , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Proc Natl Acad Sci U S A ; 116(23): 11116-11118, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110014

RESUMO

The normal function of α-synuclein (α-syn) remains elusive. Although recent studies suggest α-syn as a physiologic attenuator of synaptic vesicle (SV) recycling, mechanisms are unclear. Here, we show that synapsin-a cytosolic protein with known roles in SV mobilization and clustering-is required for presynaptic functions of α-syn. Our data offer a critical missing link and advocate a model where α-syn and synapsin cooperate to cluster SVs and attenuate recycling.


Assuntos
Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
3.
J Biol Chem ; 295(52): 18076-18090, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33087443

RESUMO

α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn-mediated membrane trafficking.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , alfa-Sinucleína/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , alfa-Sinucleína/genética
4.
Brain Behav Immun ; 66: 125-134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28733081

RESUMO

OBJECTIVE: To study the prevalence of autoantibodies to synapsin in patients with psychiatric and neurological disorders and to describe clinical findings in synapsin antibody positive patients. METHODS: Sera of 375 patients with different psychiatric and neurological disorders and sera of 97 healthy controls were screened (dilution 1:320) for anti-synapsin IgG using HEK293 cells transfected with rat synapsin Ia. Positive sera were further analyzed by immunoblots with brain tissue from wild type and synapsin knock out mice and with HEK293 cells transfected with human synapsin Ia and Ib. Binding of synapsin IgG positive sera to primary neurons was studied using murine hippocampal neurons. RESULTS: IgG in serum from 23 (6.1%) of 375 patients, but from none of the 97 healthy controls (p=0.007), bound to rat synapsin Ia transfected cells with a median (range) titer of 1:1000 (1:320-1:100,000). Twelve of the 23 positive sera reacted with a protein of the molecular size of synapsin I in immunoblots of wild type but not of synapsin knock out mouse brain tissue. Out of 19/23 positive sera available for testing, 13 bound to human synapsin Ia and 16 to human synapsin Ib transfected cells. Synapsin IgG positive sera stained fixed and permeabilized murine hippocampal neurons. Synapsin IgG positive patients had various psychiatric and neurological disorders. Tumors were documented in 2 patients (melanoma, small cell lung carcinoma); concomitant anti-neuronal or other autoantibodies were present in 8 patients. CONCLUSIONS: Autoantibodies to human synapsin Ia and Ib are detectable in a proportion of sera from patients with different psychiatric and neurological disorders, warranting further investigation into the potential pathophysiological relevance of these antibodies.


Assuntos
Autoanticorpos/sangue , Transtornos Mentais/imunologia , Doenças do Sistema Nervoso/imunologia , Sinapsinas/sangue , Sinapsinas/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Imunoglobulina G/sangue , Masculino , Transtornos Mentais/sangue , Transtornos Mentais/epidemiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/epidemiologia , Neurônios/metabolismo , Prevalência , Ratos , Adulto Jovem
6.
J Neurosci ; 35(3): 985-98, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609616

RESUMO

Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Transmissão Sináptica/fisiologia
7.
Cerebellum ; 15(4): 509-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26374457

RESUMO

Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress.


Assuntos
Citosol/enzimologia , Ácido Glutâmico/toxicidade , Mitocôndrias/enzimologia , Células de Purkinje/enzimologia , Lesões Experimentais por Radiação/enzimologia , Telomerase/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Núcleo Celular/efeitos da radiação , Citosol/patologia , Citosol/efeitos da radiação , Dano ao DNA/fisiologia , Dano ao DNA/efeitos da radiação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imunofluorescência , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Células de Purkinje/patologia , Células de Purkinje/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Estresse Fisiológico/fisiologia , Estresse Fisiológico/efeitos da radiação , Telomerase/genética , Técnicas de Cultura de Tecidos , Raios X/efeitos adversos
8.
J Neurosci ; 34(21): 7266-80, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849359

RESUMO

Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Hipocampo/citologia , Sinapses/ultraestrutura , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/farmacologia , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Gravidez , Ligação Proteica/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sinapsinas/deficiência , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Tetrodotoxina/farmacologia
9.
Cereb Cortex ; 24(4): 996-1008, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23236212

RESUMO

Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.


Assuntos
Encefalopatias/genética , Encefalopatias/patologia , Córtex Entorrinal/patologia , Plasticidade Neuronal/genética , Sinapsinas/deficiência , Fatores Etários , Análise de Variância , Animais , Estimulação Elétrica , Córtex Entorrinal/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
10.
Arch Gynecol Obstet ; 292(5): 1027-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25940355

RESUMO

PURPOSE: Placental growth factor (PlGF) has been suggested as a possible biomarker for major placenta-related disorders such as preeclampsia and intrauterine growth restriction. However, experimental findings suggest that PlGF concentrations may be influenced by other factors besides the placenta. In the present study, we examined how acute fetal injury affects PlGF concentrations in maternal circulation. We therefore monitored PlGF concentrations in maternal circulation before and after feticide. METHODS: A prospective comparative study was performed. Blood samples were drawn prospectively between January and July 2012, before and after feticide at predetermined time points in relation to the procedure (0, 30, 60, and 120 min). The levels of lactate dehydrogenase (LDH) in the maternal circulation were measured to detect acute tissue damage. PlGF concentrations were measured by standard human ELISA. RESULTS: Following feticide (60 and 120 min), PlGF concentrations decreased significantly compared to the concentrations before feticide. LDH concentrations did not change before and after feticide. CONCLUSIONS: Our finding, along with the detailed review of the literature described in our work, supports a new concept in which primary fetal distress can affect PlGF concentration in maternal circulation. A large-scale study is required to strengthen our finding.


Assuntos
Hidroliases/sangue , Placenta/metabolismo , Proteínas da Gravidez/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Morte Fetal , Retardo do Crescimento Fetal/sangue , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Placenta/patologia , Fator de Crescimento Placentário , Pré-Eclâmpsia/sangue , Gravidez , Estudos Prospectivos
11.
J Neurosci ; 33(39): 15362-75, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068803

RESUMO

Although it is known that cytosolic/soluble proteins synthesized in cell bodies are transported at much lower overall velocities than vesicles in fast axonal transport, the fundamental basis for this slow movement is unknown. Recently, we found that cytosolic proteins in axons of mouse cultured neurons are conveyed in a manner that superficially resembles diffusion, but with a slow anterograde bias that is energy- and motor-dependent (Scott et al., 2011). Here we show that slow axonal transport of synapsin, a prototypical member of this rate class, is dependent upon fast vesicle transport. Despite the distinct overall dynamics of slow and fast transport, experimentally induced and intrinsic variations in vesicle transport have analogous effects on slow transport of synapsin as well. Dynamic cotransport of vesicles and synapsin particles is also seen in axons, consistent with a model where higher-order assemblies of synapsin are conveyed by transient and probabilistic associations with vesicles moving in fast axonal transport. We posit that such dynamic associations generate the slow overall anterogradely biased flow of the population ("dynamic-recruitment model"). Our studies uncover the underlying kinetic basis for a classic cytosolic/soluble protein moving in slow axonal transport and reveal previously unknown links between slow and fast transport, offering a clearer conceptual picture of this curious phenomenon.


Assuntos
Transporte Axonal , Sinapsinas/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Células Cultivadas , Cinética , Camundongos , Neurônios/metabolismo , Transporte Proteico
12.
Elife ; 122024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713200

RESUMO

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Assuntos
Hipocampo , Neurônios , Sinapsinas , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/química , Células Cultivadas , Hipocampo/metabolismo , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Sinapses/metabolismo , Sinapsinas/metabolismo , Sinapsinas/genética , Vesículas Sinápticas/metabolismo
13.
J Neurosci ; 32(12): 3969-80, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22442064

RESUMO

Presynaptic terminals are specialized sites for information transmission where vesicles fuse with the plasma membrane and are locally recycled. Recent work has extended this classical view, with the observation that a subset of functional vesicles is dynamically shared between adjacent terminals by lateral axonal transport. Conceptually, such transport would be expected to disrupt vesicle retention around the active zone, yet terminals are characterized by a high-density vesicle cluster, suggesting that counteracting stabilizing mechanisms must operate against this tendency. The synapsins are a family of proteins that associate with synaptic vesicles and determine vesicle numbers at the terminal, but their specific function remains controversial. Here, using multiple quantitative fluorescence-based approaches and electron microscopy, we show that synapsin is instrumental for resisting vesicle dispersion and serves as a regulatory element for controlling lateral vesicle sharing between synapses. Deleting synapsin disrupts the organization of presynaptic vesicle clusters, making their boundaries hard to define. Concurrently, the fraction of vesicles amenable to transport is increased, and more vesicles are translocated to the axon. Importantly, in neurons from synapsin knock-out mice the resting and recycling pools are equally mobile. Synapsin, when present, specifically restricts the mobility of resting pool vesicles without affecting the division of vesicles between these pools. Specific expression of synapsin IIa, the sole isoform affecting synaptic depression, rescues the knock-out phenotype. Together, our results show that synapsin is pivotal for maintaining synaptic vesicle cluster integrity and that it contributes to the regulated sharing of vesicles between terminals.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapsinas/metabolismo , Vesículas Sinápticas/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Regulação da Expressão Gênica/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Purinas/farmacologia , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Roscovitina , Estatísticas não Paramétricas , Sinapsinas/deficiência , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo , Transfecção/métodos , Valina/análogos & derivados , Valina/farmacologia , Proteína 2 Associada à Membrana da Vesícula/metabolismo
14.
J Neurochem ; 126(2): 213-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23496032

RESUMO

The direct visualization of subcellular dynamic processes is often hampered by limitations in the resolving power achievable with conventional microscopy techniques. Fluorescence recovery after photobleaching has emerged as a highly informative approach to address this challenge, permitting the quantitative measurement of the movement of small organelles and proteins in living functioning cells, and offering detailed insights into fundamental cellular phenomena of physiological importance. In recent years, its implementation has benefited from the increasing availability of confocal microscopy systems and of powerful labeling techniques based on genetically encoded fluorescent proteins or other chemical markers. In this review, we present fluorescence recovery after photobleaching and related techniques in the context of contemporary neurobiological research and discuss quantitative and semi-quantitative approaches to their interpretation.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Neurônios/fisiologia , Fotodegradação , Fenômenos Fisiológicos/fisiologia , Proteínas/metabolismo , Animais , Recuperação de Fluorescência Após Fotodegradação/instrumentação , Humanos
15.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37425805

RESUMO

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at the synapse. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.

16.
J Neurochem ; 120(2): 248-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22066784

RESUMO

The synaptic vesicle cycle encompasses the pre-synaptic events that drive neurotransmission. Influx of calcium leads to the fusion of synaptic vesicles with the plasma membrane and the release of neurotransmitter, closely followed by endocytosis. Vacated release sites are repopulated with vesicles which are then primed for release. When activity is intense, reserve vesicles may be mobilized to counteract an eventual decline in transmission. Recently, interplay between endocytosis and repopulation of the readily releasable pool of vesicles has been identified. In this study, we show that exo-endocytosis is necessary to enable detachment of synapsin from reserve pool vesicles during synaptic activity. We report that blockage of exocytosis in cultured mouse hippocampal neurons, either by tetanus toxin or by the deletion of munc13, inhibits the activity-dependent redistribution of synapsin from the pre-synaptic terminal into the axon. Likewise, perturbation of endocytosis with dynasore or by a dynamin dominant-negative mutant fully prevents synapsin redistribution. Such inhibition of synapsin redistribution occurred despite the efficient phosphorylation of synapsin at its protein kinase A/CaMKI site, indicating that disengagement of synapsin from the vesicles requires exocytosis and endocytosis in addition to phosphorylation. Our results therefore reveal hitherto unidentified feedback within the synaptic vesicle cycle involving the synapsin-managed reserve pool.


Assuntos
Endocitose/fisiologia , Exocitose/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Exocitose/efeitos dos fármacos , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hidrazonas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Técnicas de Patch-Clamp , Fosforilação , Estatísticas não Paramétricas , Sinapses/efeitos dos fármacos , Sinapses/genética , Vesículas Sinápticas/efeitos dos fármacos , Toxina Tetânica/farmacologia , Transfecção/métodos
17.
Eur J Neurosci ; 36(8): 3005-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22805168

RESUMO

Synapsins are abundant synaptic vesicle (SV)-associated proteins thought to mediate synaptic vesicle mobility and clustering at most synapses. We used synapsin triple knock-out (TKO) mice to examine the morphological and functional consequences of deleting all synapsin isoforms at the calyx of Held, a giant glutamatergic synapse located in the auditory brain stem. Quantitative three-dimensional (3D) immunohistochemistry of entire calyces showed lower amounts of the synaptic vesicle protein vGluT1 while the level of the active zone marker bassoon was unchanged in TKO terminals. Examination of brain lysates by ELISA revealed a strong reduction in abundance of several synaptic vesicle proteins, while proteins of the active zone cytomatrix or postsynaptic density were unaffected. Serial section scanning electron microscopy of large 3D-reconstructed segments confirmed a decrease in the number of SVs to approximately 50% in TKO calyces. Short-term depression tested at stimulus frequencies ranging from 10 to 300 Hz was accelerated only at frequencies above 100 Hz and the time course of recovery from depression was slowed in calyces lacking synapsins. These results reveal that in wild-type synapses, the synapsin-dependent reserve pool contributes to the replenishment of the readily releasable pool (RRP), although accounting only for a small fraction of the SVs that enter the RRP. In conclusion, our results suggest that synapsins may be required for normal synaptic vesicle biogenesis, trafficking and immobilization of synaptic vesicles, yet they are not essential for sustained high-frequency synaptic transmission at the calyx terminal.


Assuntos
Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Tronco Encefálico/metabolismo , Exocitose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/genética , Sinapses/metabolismo , Sinapses/fisiologia , Potenciais Sinápticos , Transmissão Sináptica/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
18.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35192454

RESUMO

Mitochondrial activity is crucial for the plasticity of central synapses, but how the firing pattern of pre- and postsynaptic neurons affects the mitochondria remains elusive. We recorded changes in the fluorescence of cytosolic and mitochondrial Ca2+ indicators in cell bodies, axons, and dendrites of cortical pyramidal neurons in mouse brain slices while evoking pre- and postsynaptic spikes. Postsynaptic spike firing elicited fast mitochondrial Ca2+ responses that were about threefold larger in the somas and apical dendrites than in basal dendrites and axons. The amplitude of these responses and metabolic activity were extremely sensitive to the firing frequency. Furthermore, while an EPSP alone caused no detectable Ca2+ elevation in the dendritic mitochondria, the coincidence of EPSP with a backpropagating spike produced prominent, highly localized mitochondrial Ca2+ hotspots. Our results indicate that mitochondria decode the spike firing frequency and the Hebbian temporal coincidences into the Ca2+ signals, which are further translated into the metabolic output and most probably lead to long-term changes in synaptic efficacy.


Assuntos
Dendritos , Células Piramidais , Potenciais de Ação/fisiologia , Animais , Dendritos/fisiologia , Camundongos , Mitocôndrias , Neurônios/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia
19.
Microsc Microanal ; 17(2): 176-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21333032

RESUMO

Contemporary research aims to understand biological processes not only by identifying participating proteins, but also by characterizing the dynamics of their interactions. Because Förster's Resonance Energy Transfer (FRET) is invaluable for the latter undertaking, its usage is steadily increasing. However, FRET measurements are notoriously error-prone, especially when its inherent efficiency is low, a not uncommon situation. Furthermore, many FRET methods are either difficult to implement, are not appropriate for observation of cellular dynamics, or report instrument-specific indices that hamper communication of results within the scientific community. We present here a novel comprehensive spectral methodology, SpRET, which substantially increases both the reliability and sensitivity of FRET microscopy, even under unfavorable conditions such as weak fluorescence or the presence of noise. While SpRET overcomes common pitfalls such as interchannel crosstalk and direct excitation of the acceptor, it also excels in removal of autofluorescence or background contaminations and in correcting chromatic aberrations, often overlooked factors that severely undermine FRET experiments. Finally, SpRET quantitatively reports absolute rather than relative FRET efficiency values, as well as the acceptor-to-donor molar ratio, which is critical for full and proper interpretation of FRET experiments. Thus, SpRET serves as an advanced, improved, and powerful tool in the cell biologist's toolbox.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Células/química , Células/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Células HEK293 , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sensibilidade e Especificidade
20.
Mol Metab ; 49: 101191, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33592336

RESUMO

OBJECTIVE: The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis. METHODS: DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements. RESULTS: Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration. CONCLUSION: We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Glicólise/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios , Gânglios Espinais/metabolismo , Masculino , Mitocôndrias/metabolismo , Neuritos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA