Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 193, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539237

RESUMO

BACKGROUND: Macrophages release not only cytokines but also extracellular vesicles (EVs). which are small membrane-derived nanovesicles with virus-like properties transferring cellular material between cells. Until now, the consequences of macrophage plasticity on the release and the composition of EVs have been poorly explored. In this study, we determined the impact of high-glucose (HG) concentrations on macrophage metabolism, and characterized their derived-EV subpopulations. Finally, we determined whether HG-treated macrophage-derived EVs participate in immune responses and in metabolic alterations of skeletal muscle cells. METHODS: THP1-macrophages were treated with 15mM (MG15) or 30mM (MG30) glucose. Then, M1/M2 canonical markers, pro- and anti-inflammatory cytokines, activities of proteins involved in glycolysis or oxidative phosphorylation were evaluated. Macrophage-derived EVs were characterized by TEM, NTA, MRSP, and 1H-Nuclear magnetic resonance spectroscopy for lipid composition. Macrophages or C2C12 muscle cells were used as recipients of MG15 and MG30-derived EVs. The lipid profiles of recipient cells were determined, as well as proteins and mRNA levels of relevant genes for macrophage polarization or muscle metabolism. RESULTS: Untreated macrophages released small and large EVs (sEVs, lEVs) with different lipid distributions. Proportionally to the glucose concentration, glycolysis was induced in macrophages, associated to mitochondrial dysfunction, triacylglycerol and cholesterol accumulation. In addition, MG15 and MG30 macrophages had increased level of CD86 and increase release of pro-inflammatory cytokines. HG also affected macrophage sphingolipid and phospholipid compositions. The differences in the lipid profiles between sEVs and lEVs were abolished and reflected the lipid alterations in MG15 and MG30 macrophages. Interestingly, MG15 and MG30 macrophages EVs induced the expression of CD163, Il-10 and increased the contents of triacylglycerol and cholesterol in recipient macrophages. MG15 lEVs and sEVs induced insulin-induced AKT hyper-phosphorylation and accumulation of triacylglycerol in myotubes, a state observed in pre-diabetes. Conversely, MG30 lEVs and sEVs induced insulin-resistance in myotubes. CONCLUSIONS: As inflammation involves first M1 macrophages, then the activation of M2 macrophages to resolve inflammation, this study demonstrates that the dialog between macrophages through the EV route is an intrinsic part of the inflammatory response. In a hyperglycemic context, EV macrophages could participate in the development of muscle insulin-resistance and chronic inflammation.


Assuntos
Vesículas Extracelulares , Insulinas , Humanos , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Vesículas Extracelulares/metabolismo , Lipídeos , Homeostase , Triglicerídeos/metabolismo , Colesterol/metabolismo , Insulinas/metabolismo
2.
Aging Clin Exp Res ; 35(10): 2219-2225, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37626230

RESUMO

BACKGROUND: Since the incidence of cancer increases with age, in older cancer patients important information may be missed without a Comprehensive Geriatric Assessment (CGA). On the other side, CGA is a time-consuming and complex instrument, so that Geriatric 8 (G8) has been proposed as a more feasible screening tool to identify patients who could benefit from a CGA evaluation. G8 consists of 8 questions (patient age + 7 items derived from the Mini Nutritional Assessment questionnaire). A G8 score ≤ 14 is considered associated with frailty and risk of malnutrition. Another screening test is Bioelectrical Impedance Analysis (Bioimpedentiometry, BIA), which enables to evaluate the nutritional status through a specific parameter known as Phase angle (PhA). This study is aimed at assessing the ability of G8 alone or in combination with PhA to detect elderly cancer patients at higher risk for malnutrition who cannot undergo immediate anticancer treatments. METHODS: A total of 289 cancer patients (168 men and 121 women) aged ≥ 70 years old were enrolled and performed both G8 test, body mass index (BMI) and BIA assessments. A concurrent G8 score ≤ 14 and PhA < 5 defined subjects most exposed to the risk of malnutrition. RESULTS: An association between BMI and G8 (p < 0.001, OR 1.54) and a clinically significant relationship between G8 and PhA (p = 0.013) were observed. CONCLUSION: G8 can be used to identify patients at risk for malnutrition who would benefit from comprehensive CGA. The concurrent use of G8 and BIA presents a higher power in discriminating subjects at higher risk of malnutrition than a single test. This study suggests the need for routine assessment of nutritional status in cancer patients using combinations of methods, in order to implement strategies for individually-tailored care before starting any treatment.


Assuntos
Fragilidade , Desnutrição , Neoplasias , Idoso , Masculino , Humanos , Feminino , Fragilidade/diagnóstico , Desnutrição/diagnóstico , Neoplasias/complicações , Neoplasias/terapia , Estado Nutricional , Avaliação Nutricional , Avaliação Geriátrica/métodos
3.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769362

RESUMO

Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, make the comparison of the studies in the literature extremely difficult. This work aims to investigate the EV amount and EV-associated miRNAs released in circulation in response to different physical exercise regimens. Healthy individuals were subjected to different exercise protocols: acute aerobic exercise (AAE) and training (AT), acute maximal aerobic exercise (AMAE) and altitude aerobic training (AAT). We found a tendency for total EVs to increase in the sedentary condition compared to trained participants following AAE. Moreover, the cytofluorimetric analysis showed an increase in CD81+/SGCA+/CD45- EVs in response to AAE. Although a single bout of moderate/maximal exercise did not impact the total EV number, EV-miRNA levels were affected as a result. In detail, EV-associated miR-206, miR-133b and miR-146a were upregulated following AAE, and this trend appeared intensity-dependent. Finally, THP-1 macrophage treatment with exercise-derived EVs induced an increase of the mRNAs encoding for IL-1ß, IL-6 and CD163 using baseline and immediately post-exercise EVs. Still, 1 h post-exercise EVs failed to stimulate a pro-inflammatory program. In conclusion, the reported data provide a better understanding of the release of circulating EVs and their role as mediators of the inflammatory processes associated with exercise.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , Macrófagos , Exercício Físico
4.
FASEB J ; 34(7): 9358-9371, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463138

RESUMO

Numerous nutritional approaches aimed at reducing body weight have been developed as a strategy to reduce obesity. Most of these interventions rely on reducing caloric intake or limiting calories access to a few hours per day. In this work, we analyzed the effects of the extended (24 hours/day) or restricted (1 hour/day) access to a cafeteria-style (CAF) diet, on rat body weight and hepatic lipid metabolism, with respect to control rats (CTR) fed with a standard chow diet. The body weight gain of restricted-fed rats was not different from CTR, despite the slightly higher total caloric intake, but resulted significantly lower than extended-fed rats, which showed a CAF diet-induced obesity and a dramatically higher total caloric intake. However, both CAF-fed groups of rats showed, compared to CTR, unhealthy serum and hepatic parameters such as higher serum glucose level, lower HDL values, and increased hepatic triacylglycerol and cholesterol amount. The hepatic expression and activity of key enzymes of fatty acid synthesis, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), was similarly reduced in both CAF-fed groups of rats with respect to CTR. Anyway, while in extended-fed rats this reduction was associated to a long-term mechanism involving sterol regulatory element-binding protein-1 (SREBP-1), in restricted-fed animals a short-term mechanism based on PKA and AMPK activation occurred in the liver. Furthermore, hepatic fatty acid oxidation (FAO) and oxidative stress resulted significantly increased in extended, but not in restricted-fed rats, as compared to CTR. Overall, these results demonstrate that although limiting the total caloric intake might successfully fight obesity development, the nutritional content of the diet is the major determinant for the health status.


Assuntos
Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Fígado/metabolismo , Fígado/patologia , Aumento de Peso , Animais , Ingestão de Energia , Lipídeos/sangue , Masculino , Ratos , Ratos Wistar
5.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577048

RESUMO

Over the last few years, much attention has been paid to phytocannabinoids derived from Cannabis for their therapeutic potential. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant compounds of the Cannabis sativa L. plant. Recently, novel phytocannabinoids, such as cannabidibutol (CBDB) and cannabidiphorol (CBDP), have been discovered. These new molecules exhibit the same terpenophenolic core of CBD and differ only for the length of the alkyl side chain. Roles of CBD homologs in physiological and pathological processes are emerging but the exact molecular mechanisms remain to be fully elucidated. Here, we investigated the biological effects of the newly discovered CBDB or CBDP, compared to the well-known natural and synthetic CBD (nat CBD and syn CBD) in human breast carcinoma cells that express CB receptors. In detail, our data demonstrated that the treatment of cells with the novel phytocannabinoids affects cell viability, increases the production of reactive oxygen species (ROS) and activates cellular pathways related to ROS signaling, as already demonstrated for natural CBD. Moreover, we observed that the biological activity is significantly increased upon combining CBD homologs with drugs that inhibit the activity of enzymes involved in the metabolism of endocannabinoids, such as the monoacylglycerol lipase (MAGL) inhibitor, or with drugs that induces the activation of cellular stress pathways, such as the phorbol ester 12-myristate 13-acetate (PMA).


Assuntos
Neoplasias da Mama , Canabidiol , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio
6.
FASEB J ; 33(1): 1428-1439, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133327

RESUMO

It is widely accepted that chronic stress may alter the homeostatic mechanisms of body weight control. In this study, we followed the metabolic changes occurring in mice when chronic stress caused by psychosocial defeat (CPD) is associated with ad libitum exposure to a palatable high-fat diet (HFD). In this model, CPD mice consumed more HFD than unstressed (Un) mice without gaining body weight. We focused on metabolic processes involved in weight control, such as de novo lipogenesis (DNL), fatty acid ß-oxidation (FAO), and thermogenesis. The activity and expression of DNL enzymes were reduced in the liver and white adipose tissue of mice consuming the HFD. Such effects were particularly evident in stressed mice. In both CPD and Un mice, HFD consumption increased the hepatic expression of the mitochondrial FAO enzyme carnitine palmitoyltransferase-1. In the liver of mice consuming the HFD, stress exposure prevented accumulation of triacylglycerols; however, accumulation of triacylglycerols was observed in Un mice under the same dietary regimen. In brown adipose tissue, stress increased the expression of uncoupling protein-1, which is involved in energy dissipation, both in HFD and control diet-fed mice. We consider increased FAO and energy dissipation responsible for the antiobesity effect seen in CPD/HFD mice. However, CPD associated with HFD induced hepatic oxidative stress.-Giudetti, A. M., Testini, M., Vergara, D., Priore, P., Damiano, F., Gallelli, C. A., Romano, A., Villani, R., Cassano, T., Siculella, L., Gnoni, G. V., Moles, A., Coccurello, R., Gaetani, S. Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high-fat diet.


Assuntos
Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Estresse Psicológico , Acetil-CoA Carboxilase/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/enzimologia , Animais , Peso Corporal , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Modelos Animais de Doenças , Ingestão de Energia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Proteína Desacopladora 1/metabolismo
7.
Molecules ; 25(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906370

RESUMO

l-Carnitine is an amino acid derivative widely known for its involvement in the transport of long-chain fatty acids into the mitochondrial matrix, where fatty acid oxidation occurs. Moreover, l-Carnitine protects the cell from acyl-CoA accretion through the generation of acylcarnitines. Circulating carnitine is mainly supplied by animal-based food products and to a lesser extent by endogenous biosynthesis in the liver and kidney. Human muscle contains high amounts of carnitine but it depends on the uptake of this compound from the bloodstream, due to muscle inability to synthesize carnitine. Mitochondrial fatty acid oxidation represents an important energy source for muscle metabolism particularly during physical exercise. However, especially during high-intensity exercise, this process seems to be limited by the mitochondrial availability of free l-carnitine. Hence, fatty acid oxidation rapidly declines, increasing exercise intensity from moderate to high. Considering the important role of fatty acids in muscle bioenergetics, and the limiting effect of free carnitine in fatty acid oxidation during endurance exercise, l-carnitine supplementation has been hypothesized to improve exercise performance. So far, the question of the role of l-carnitine supplementation on muscle performance has not definitively been clarified. Differences in exercise intensity, training or conditioning of the subjects, amount of l-carnitine administered, route and timing of administration relative to the exercise led to different experimental results. In this review, we will describe the role of l-carnitine in muscle energetics and the main causes that led to conflicting data on the use of l-carnitine as a supplement.


Assuntos
Carnitina/análogos & derivados , Carnitina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Carnitina/administração & dosagem , Carnitina/biossíntese , Carnitina/química , Carnitina/farmacologia , Carnitina O-Palmitoiltransferase/metabolismo , Suplementos Nutricionais/efeitos adversos , Exercício Físico/fisiologia , Humanos , Metilaminas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Oxirredução
8.
IUBMB Life ; 71(7): 863-872, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30707786

RESUMO

Hepatic de novo lipogenesis (DNL), the process by which carbohydrates are converted into lipids, is strictly controlled by nutritional and hormonal status. 3,5-Diiodo-L-thyronine (T2), a product of the 3,5,3'-triiodo-L-thyronine (T3) peripheral metabolism, has been shown to mimic some T3 effects on lipid metabolism by a short-term mechanism independent of protein synthesis. Here, we report that T2, administered for 1 week to hypothyroid rats, increases total fatty acid synthesis from acetate in isolated hepatocytes. Studies carried out on liver subcellular fractions demonstrated that T2 not only increases the activity and the expression of acetyl-CoA carboxylase and fatty acid synthase but also of other proteins linked to DNL such as the mitochondrial citrate carrier and the cytosolic ATP citrate lyase. Parallelly, T2 stimulates the activities of enzymes supplying cytosolic NADPH needed for the reductive steps of DNL. With respect to both euthyroid and hypothyroid rats, T2 administration decreases the hepatic mRNA level of SREBP-1, a transcription factor which represents a master regulator of DNL. However, when compared to hypothyroid rats T2 significantly increases, without bringing to the euthyroid value, the content of both mature (nSREBP-1), and precursor (pSREBP-1) forms of the SREBP-1 protein as well as their ratio. Moreover, T2 administration strongly augmented the nuclear content of ChREBP, another crucial transcription factor involved in the regulation of lipogenic genes. Based on these results, we can conclude that in the liver of hypothyroid rats the transcriptional activation by T2 of DNL genes could depend, at least in part, on SREBP-1- and ChREBP-dependent mechanisms. © 2019 IUBMB Life, 2019.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Di-Iodotironinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotireoidismo/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/patologia , Fígado/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ativação Transcricional
9.
J Cell Physiol ; 233(8): 6207-6223, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29327509

RESUMO

Peripheral nerve regeneration is regulated through the coordinated spatio-temporal activation of multiple cellular pathways. In this work, an integrated proteomics and bioinformatics approach was employed to identify differentially expressed proteins at the injury-site of rat sciatic nerve at 20 days after damage. By a label-free liquid chromatography mass-spectrometry (LC-MS/MS) approach, we identified 201 differentially proteins that were assigned to specific canonical and disease and function pathways. These include proteins involved in cytoskeleton signaling and remodeling, acute phase response, and cellular metabolism. Metabolic proteins were significantly modulated after nerve injury to support a specific metabolic demand. In particular, we identified a group of proteins involved in lipid uptake and lipid storage metabolism. Immunofluorescent staining for acyl-CoA diacylglycerol acyltransferase 1 (DGAT1) and DAGT2 expression provided evidence for the expression and localization of these two isoforms in Schwann cells at the injury site in the sciatic nerve. This further supports a specific local regulation of lipid metabolism in peripheral nerve after damage.


Assuntos
Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso/metabolismo , Nervo Isquiático/metabolismo , Animais , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Diacilglicerol O-Aciltransferase/metabolismo , Feminino , Metabolismo dos Lipídeos/fisiologia , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem/métodos
10.
Eur J Nutr ; 57(4): 1485-1498, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28314964

RESUMO

PURPOSE: Chronic exposure to stress may represent a risk factor for developing metabolic and eating disorders, mostly driven by the overconsumption of easily accessible energy-dense palatable food, although the mechanisms involved remain still unclear. In this study, we used an ethologically oriented murine model of chronic stress caused by chronic psychosocial defeat (CPD) to investigate the effects of unrestricted access to a palatable high fat diet (HFD) on food intake, body weight, energy homeostasis, and expression of different brain neuropeptides. Our aim was to shed light on the mechanisms responsible for body weight and body composition changes due to chronic social stress. METHODS: In our model of subordinate (defeated), mice (CPD) cohabitated in constant sensory contact with dominants, being forced to interact on daily basis, and were offered ad libitum access either to an HFD or to a control diet (CD). Control mice (of the same strain as CPD mice) were housed in pairs and left unstressed in their home cage (UN). In all these mice, we evaluated body weight, different adipose depots, energy metabolism, caloric intake, and neuropeptide expression. RESULTS: CPD mice increased the intake of HFD and reduced body weight in the presence of enhanced lipid oxidation. Resting energy expenditure and interscapular brown adipose tissue (iBAT) were increased in CPD mice, whereas epididymal adipose tissue increased only in HFD-fed unstressed mice. Propiomelanocortin mRNA levels in hypothalamic arcuate nucleus increased only in HFD-fed unstressed mice. Oxytocin mRNA levels in the paraventricular nucleus and neuropeptide Y mRNA levels within the arcuate were increased only in CD-fed CPD mice. In the arcuate, CART was increased in HFD-fed UN mice and in CD-fed CPD mice, while HFD intake suppressed CART increase in defeated animals. In the basolateral amygdala, CART expression was increased only in CPD animals on HFD. CONCLUSIONS: CPD appears to uncouple the intake of HFD from energy homeostasis causing higher HFD intake, larger iBAT accumulation, increased energy expenditure and lipid oxidation, and lower body weight. Overall, the present study confirms the notion that the chronic activation of the stress response can be associated with metabolic disorders, altered energy homeostasis, and changes of orexigenic and anorexigenic signaling. These changes might be relevant to better understand the etiology of stress-induced obesity and eating disorders and might represent a valid therapeutic approach for the development of new therapies in this field.


Assuntos
Dieta Hiperlipídica , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Animais , Peso Corporal , Itália , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
11.
Int J Mol Sci ; 17(6)2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231907

RESUMO

The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism.


Assuntos
Carnitina Aciltransferases/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/biossíntese , Ácidos Graxos/biossíntese , Hormônios Tireóideos/fisiologia , Acetilcoenzima A/metabolismo , Animais , Carnitina Aciltransferases/genética , Proteínas de Transporte/genética , Citosol/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Lipogênese , Mitocôndrias/metabolismo
12.
BMC Neurosci ; 16: 46, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26205308

RESUMO

BACKGROUND: Lipids play different important roles in central nervous system so that dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders including multiple sclerosis (MS). MS is the most prevalent autoimmune disorder of the central nervous system, with neurological symptoms caused by inflammation and demyelination. In this study, a lipidomic analysis was performed for the rapid profile of CD4(+) T lymphocytes from MS patient and control samples in an untargeted approach. METHODS: A matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry based approach was used for the analysis of lipid extracts using 9-aminoacridine as matrix. Lipids were analyzed in negative mode and selected species fragmented using MALDI tandem mass spectrometry for their structural assignments. RESULTS: The analysis reveals some modifications in the phospholipid pattern of MS CD4(+) T lymphocytes with respect to healthy controls with a significant increase of cardiolipin species in MS samples. CONCLUSIONS: These results demonstrate the feasibility of a MALDI-TOF approach for the analysis of CD4(+) lipid extracts and suggest how alterations in the lipid metabolism characterized lymphocytes of MS patients.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Cardiolipinas/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fosfolipídeos/metabolismo , Adolescente , Adulto , Análise Discriminante , Ácidos Graxos/metabolismo , Estudos de Viabilidade , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Análise Multivariada , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto Jovem
13.
Biochim Biophys Acta ; 1832(12): 2019-26, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23851051

RESUMO

Cholestasis is one of the major causes of liver diseases. A chronic accumulation of toxic bile acids in the liver, which occurs in this condition, can induce fibrosis and cirrhosis. Inflammation is a fundamental component of acute and chronic cholestatic liver injury. Platelet-activating factor (PAF) is a proinflammatory lipid which may be generated by two independent pathways called the de novo and remodeling pathway being the last responsible for the synthesis of PAF during inflammation. In recent years a key role in PAF remodeling has been attributed to lysophosphatidylcholine acyltransferase (LPCAT) enzymes. Although the knowledge on their characteristic is growing, the exact mechanism of LPCAT in pathological conditions remains still unknown. Here, we reported that the level of lyso-PAF and PAF significantly increased in the liver of cirrhotic vs. control rats together with a significant decrease in both mRNA abundance and protein level of both LPCAT1 and LPCAT2. Acyltransferase activities of both LPCAT1 and LPCAT2 were parallel decreased in the liver of cirrhotic animals. Interestingly, treatment with silybin strongly decreased the level of both pro-inflammatory lipids and restored the activity and expression of both LPCAT1 and LPCAT2 of cirrhotic liver. Silybin effect was specific for LPCAT1 and LPCAT2 since it did not affect LPCAT3 mRNA abundance of cirrhotic liver.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/antagonistas & inibidores , Cromatografia em Camada Fina , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Cirrose Hepática/complicações , Fator de Ativação de Plaquetas/metabolismo , Silimarina/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Antioxidantes/farmacologia , Western Blotting , Regulação para Baixo , Inflamação/etiologia , Inflamação/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Fosfolipases A2/metabolismo , Fator de Ativação de Plaquetas/genética , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Silibina
14.
Antioxidants (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38001810

RESUMO

Cellular senescence is closely linked to endothelial dysfunction, a key factor in age-related vascular diseases. Senescent endothelial cells exhibit a proinflammatory phenotype known as SASP, leading to chronic inflammation (inflammaging) and vascular impairments. Albeit in a state of permanent growth arrest, senescent cells paradoxically display a high metabolic activity. The relationship between metabolism and inflammation is complex and varies across cell types and senescence inductions. While some cell types shift towards glycolysis during senescence, others favor oxidative phosphorylation (OXPHOS). Despite the high availability of oxygen, quiescent endothelial cells (ECs) tend to rely on glycolysis for their bioenergetic needs. However, there are limited data on the metabolic behavior of senescent ECs. Here, we characterized the metabolic profiles of young and senescent human umbilical vein endothelial cells (HUVECs) to establish a possible link between the metabolic status and the proinflammatory phenotype of senescent ECs. Senescent ECs internalize a smaller amount of glucose, have a lower glycolytic rate, and produce/release less lactate than younger cells. On the other hand, an increased fatty acid oxidation activity was observed in senescent HUVECs, together with a greater intracellular content of ATP. Interestingly, blockade of glycolysis with 2-deoxy-D-glucose in young cells resulted in enhanced production of proinflammatory cytokines, while the inhibition of carnitine palmitoyltransferase 1 (CPT1), a key rate-limiting enzyme of fatty acid oxidation, ameliorated the SASP in senescent ECs. In summary, metabolic changes in senescent ECs are complex, and this research seeks to uncover potential strategies for modulating these metabolic pathways to influence the SASP.

15.
Prostaglandins Other Lipid Mediat ; 99(3-4): 57-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23064030

RESUMO

Chronic airway inflammation is a common symptom of several diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Excessive or inappropriate immune system activity and/or failure to resolve an acute inflammation spontaneously can induce functional changes in the walls and parenchyma of the airways. Continuous recruitment of inflammatory cells to the site of inflammation and the production of protein (i.e., cytokines, chemokines, enzymes, etc.) and lipid (eicosanoids) pro-inflammatory mediators contribute directly or indirectly to changes in airway structure and function. Pro-inflammatory eicosanoids are mainly formed by the metabolism of arachidonic acid, an n-6 polyunsaturated fatty acid esterified at the s-n2 position of membrane phospholipids. Unlike n-6 polyunsaturated fatty acids (PUFA), n-3 PUFA decrease inflammation. The anti-inflammatory effect of n-3 PUFA derives from their ability to compete with arachidonic acid in the production of eicosanoids, thereby decreasing the production of pro-inflammatory cytokines and reducing immune cell functions. Moreover, n-3 PUFA can give rise to a series of pro-resolving mediators with anti-inflammatory actions, such as resolvins and protectins. While most studies have reported n-3 PUFA to have beneficial effects on chronic airway diseases, some have questioned the anti-inflammatory effects of n-3 PUFA in inflammatory airway diseases. This paper summarizes the main mechanisms by which n-3 PUFA exert anti-inflammatory and pro-resolving effects, focusing on their use in airway disorders with an inflammatory component.


Assuntos
Asma/metabolismo , Fibrose Cística/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório/efeitos dos fármacos , Animais , Ácido Araquidônico/metabolismo , Asma/fisiopatologia , Antígenos CD59/metabolismo , Quimiocinas/metabolismo , Doença Crônica , Fibrose Cística/fisiopatologia , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Humanos , Inflamação/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/metabolismo , Sistema Respiratório/fisiopatologia
16.
Front Endocrinol (Lausanne) ; 13: 977331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111296

RESUMO

Androgen receptor (AR) is expressed in 60-70% of breast cancers (BCs) and the availability of anti-AR compounds, currently used for treating prostate cancer, paves the way to tackle specifically AR-positive BC patients. The prognostic and predictive role of AR in BC is a matter of debate, since the results from clinical trials are not striking, probably due to both technical and biological reasons. In this review, we aimed to highlight WHAT is AR, describing its structure and functions, WHAT to test and HOW to detect AR, WHERE AR should be tested (on primary tumor or metastasis) and WHY studying this fascinating hormone receptor, exploring and debating on its prognostic and predictive role. We considered AR and its ratio with other hormone receptors, analyzing also studies including patients with ductal carcinoma in situ and with early and advanced BC, as well. We also emphasized the effects that both other hormone receptors and the newly emerging androgen-inducible non coding RNAs may have on AR function in BC pathology and the putative implementation in the clinical setting. Moreover, we pointed out the latest results by clinical trials and we speculated about the use of anti-AR therapies in BC clinical practice.


Assuntos
Neoplasias da Mama , Receptores Androgênicos , Androgênios , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Prognóstico , Receptores Androgênicos/genética
17.
Antioxidants (Basel) ; 11(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35052642

RESUMO

Antioxidants are privileged candidates for the development of adjuvants able to improve the efficiency of pharmacological therapies, particularly for chronic inflammatory syndromes. During the last 20 years, anti-TNFα (tumor necrosis factor alpha) monoclonal antibodies infusion has been the biological therapy most frequently administered but there is still large space for improvement in disease remission rates and maintenance. In this context, nutritional bioactive compounds contained in dietary patterns or included as supplements, may act as adjuvants for the induction and maintenance of IBD (inflammatory bowel diseases) remission. To verify this possibility, a single-center preliminary study (SI-CURA, Soluzioni Innovative per la gestione del paziente e il follow up terapeutico della Colite UlceRosA) was designed and carried out to evaluate whether a daily administration of purple corn supplement could improve the response to Infliximab (IFX) infusion of IBD patients with both Crohn's disease (CD) and ulcerative colitis (UC). A cohort of 47 patients was enrolled in the study. Biological samples were collected before the first and the third IFX infusion. All patients received nutritional guidelines, 27 of them received commercial red fruit tea with low anthocyanins content, while 20 received a purple corn supplement with a high anthocyanin content. Results show that the administration of an antioxidant-enriched purple corn supplement could improve IFX-mediated disease remission in terms of circulating inflammatory markers. Comparison between CD and UC patients revealed that, at this anthocyanin dosage, the purple corn extract administration improved the IFX response in CD but not in UC patients. Our results may pave the way for a new metacentric study of CD patients, recruiting a wider cohort and followed-up over a longer observational time.

18.
Methods Mol Biol ; 2292: 203-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651364

RESUMO

The pathogenesis of cancer involves multiple molecular alterations at the level of genome, epigenome, and stromal environment, resulting in several deregulated signal transduction pathways. Metabolites are not only end products of gene and protein expression but also a consequence of the mutual relationship between the genome and the internal environment. Considering that metabolites serve as a comprehensive chemical fingerprint of cell metabolism, metabolomics is emerging as the method able to discover metabolite biomarkers that can be developed for early cancer detection, prognosis, and response to treatment. Urine represents a noninvasive source, available and rich in metabolites, useful for cancer diagnosis, prognosis, and treatment monitoring. In this chapter, we reported the main published evidences on urinary metabolic biomarkers in the studied cancers related to hepatopancreatic and urinary tract with the aim at discussing their promising role in clinical practice.


Assuntos
Redes e Vias Metabólicas , Neoplasias/metabolismo , Neoplasias/urina , Animais , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/urina , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/urina , Metaboloma , Metabolômica/métodos , Neoplasias/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/urina , Prognóstico , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/urina
19.
Antioxidants (Basel) ; 10(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439537

RESUMO

Long-term high-fat diet (HFD) consumption can cause weight gain and obesity, two conditions often associated with hepatic non-alcoholic fatty liver and oxidative stress. Oleoylethanolamide (OEA), a lipid compound produced by the intestine from oleic acid, has been associated with different beneficial effects in diet-induced obesity and hepatic steatosis. However, the role of OEA on hepatic oxidative stress has not been fully elucidated. In this study, we used a model of diet-induced obesity to study the possible antioxidant effect of OEA in the liver. In this model rats with free access to an HFD for 77 days developed obesity, steatosis, and hepatic oxidative stress, as compared to rats consuming a low-fat diet for the same period. Several parameters associated with oxidative stress were then measured after two weeks of OEA administration to diet-induced obese rats. We showed that OEA reduced, compared to HFD-fed rats, obesity, steatosis, and the plasma level of triacylglycerols and transaminases. Moreover, OEA decreased the amount of malondialdehyde and carbonylated proteins and restored the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, which decreased in the liver of HFD-fed rats. OEA had also an improving effect on parameters linked to endoplasmic reticulum stress, thus demonstrating a role in the homeostatic control of protein folding. Finally, we reported that OEA differently regulated the expression of two transcription factors involved in the control of lipid metabolism and antioxidant genes, namely nuclear factor erythroid-derived 2-related factor 1 (Nrf1) and Nrf2, thus suggesting, for the first time, new targets of the protective effect of OEA in the liver.

20.
Artigo em Inglês | MEDLINE | ID: mdl-33808259

RESUMO

In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.


Assuntos
Neoplasias da Mama , Lipogênese , Ácidos Graxos , Humanos , Metabolismo dos Lipídeos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA