Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 229(2): 517-521, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37700467

RESUMO

We describe 2 cases of extensively drug-resistant Pseudomonas aeruginosa infection caused by a strain of public health concern, as it was recently associated with a nationwide outbreak of contaminated artificial tears. Both cases were detected through database review of genomes in the Enhanced Detection System for Hospital-Associated Transmission (EDS-HAT), a routine genome sequencing-based surveillance program. We generated a high-quality reference genome for the outbreak strain from an isolate from our center and examined the mobile elements encoding blaVIM-80 and bla-GES-9 carbapenemases. We used publicly available Pseudomonas aeruginosa genomes to explore the genetic relatedness and antimicrobial resistance genes of the outbreak strain.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Lubrificantes Oftálmicos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , beta-Lactamases/genética , Sequenciamento Completo do Genoma , Surtos de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
2.
J Infect Dis ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271564

RESUMO

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct ELISA, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In five genetically-related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsono-phagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsono-phagocytosis, which may promote KPC-Kp persistence by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

3.
J Infect Dis ; 228(1): 37-45, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36805719

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control on college campuses is challenging given communal living and student social dynamics. Understanding SARS-CoV-2 transmission among college students is important for the development of optimal control strategies. METHODS: SARS-CoV-2 nasal swab samples were collected from University of Pittsburgh students for symptomatic testing and asymptomatic surveillance from August 2020 through April 2021 from 3 campuses. Whole-genome sequencing (WGS) was performed on 308 samples, and contact tracing information collected from students was used to identify transmission clusters. RESULTS: We identified 31 Pangolin lineages of SARS-CoV-2, the majority belonging to B.1.1.7 (Alpha) and B.1.2 lineages. Contact tracing identified 142 students (46%) clustering with each other; WGS identified 53 putative transmission clusters involving 216 students (70%). WGS identified transmissions that were missed by contact tracing. However, 84 cases (27%) could not be linked by either WGS or contact tracing. Clusters were most frequently linked to students residing in the same dormitory, off-campus roommates, friends, or athletic activities. CONCLUSIONS: The majority of SARS-CoV-2-positive samples clustered by WGS, indicating significant transmission across campuses. The combination of WGS and contact tracing maximized the identification of SARS-CoV-2 transmission on campus. WGS can be used as a strategy to mitigate, and further prevent transmission among students.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pennsylvania/epidemiologia , Universidades , COVID-19/epidemiologia , Genômica , Estudantes
4.
Infect Immun ; 90(4): e0000122, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35285704

RESUMO

Severe infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are often complicated by persistent bacteremia (PB) despite active antibiotic therapy. Antibiotic resistance rarely contributes to MRSA-PB, suggesting an important role for antibiotic tolerance pathways. To identify bacterial factors associated with PB, we sequenced the whole genomes of 206 MRSA isolates derived from 20 patients with PB and looked for genetic signatures of adaptive within-host evolution. We found that genes involved in the tricarboxylic acid cycle (citZ and odhA) and stringent response (rel) bore repeated, independent, protein-altering mutations across multiple infections, indicative of convergent evolution. Both pathways have been linked previously to antibiotic tolerance. Mutations in citZ were identified most frequently, and further study showed they caused antibiotic tolerance through the loss of citrate synthase activity. Isolates harboring mutant alleles (citZ, odhA, and rel) were sampled at a low frequency from each patient but were detected in 10 (50%) of the patients. These results suggest that subpopulations of antibiotic-tolerant mutants emerge commonly during MRSA-PB. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-acquired infection. In severe cases, bacteria invade the bloodstream and cause bacteremia, a condition associated with high mortality. We analyzed the genomes of serial MRSA isolates derived from patients with bacteremia that persisted through active antibiotic therapy and found a frequent evolution of pathways leading to antibiotic tolerance. Antibiotic tolerance is distinct from antibiotic resistance, and the role of tolerance in clinical failure of antibiotic therapy is defined poorly. Our results show genetic evidence that perturbation of specific metabolic pathways plays an important role in the ability of MRSA to evade antibiotics during severe infection.


Assuntos
Bacteriemia , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Infecção Hospitalar/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia
5.
Clin Infect Dis ; 75(3): 476-482, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34791136

RESUMO

BACKGROUND: Most hospitals use traditional infection prevention (IP) methods for outbreak detection. We developed the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT), which combines whole-genome sequencing (WGS) surveillance and machine learning (ML) of the electronic health record (EHR) to identify undetected outbreaks and the responsible transmission routes, respectively. METHODS: We performed WGS surveillance of healthcare-associated bacterial pathogens from November 2016 to November 2018. EHR ML was used to identify the transmission routes for WGS-detected outbreaks, which were investigated by an IP expert. Potential infections prevented were estimated and compared with traditional IP practice during the same period. RESULTS: Of 3165 isolates, there were 2752 unique patient isolates in 99 clusters involving 297 (10.8%) patient isolates identified by WGS; clusters ranged from 2-14 patients. At least 1 transmission route was detected for 65.7% of clusters. During the same time, traditional IP investigation prompted WGS for 15 suspected outbreaks involving 133 patients, for which transmission events were identified for 5 (3.8%). If EDS-HAT had been running in real time, 25-63 transmissions could have been prevented. EDS-HAT was found to be cost-saving and more effective than traditional IP practice, with overall savings of $192 408-$692 532. CONCLUSIONS: EDS-HAT detected multiple outbreaks not identified using traditional IP methods, correctly identified the transmission routes for most outbreaks, and would save the hospital substantial costs. Traditional IP practice misidentified outbreaks for which transmission did not occur. WGS surveillance combined with EHR ML has the potential to save costs and enhance patient safety.


Assuntos
Infecção Hospitalar , Registros Eletrônicos de Saúde , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Atenção à Saúde , Surtos de Doenças , Genoma Bacteriano , Humanos , Aprendizado de Máquina , Sequenciamento Completo do Genoma/métodos
6.
Clin Infect Dis ; 73(3): e638-e642, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33367518

RESUMO

BACKGROUND: Traditional methods of outbreak investigations utilize reactive whole genome sequencing (WGS) to confirm or refute the outbreak. We have implemented WGS surveillance and a machine learning (ML) algorithm for the electronic health record (EHR) to retrospectively detect previously unidentified outbreaks and to determine the responsible transmission routes. METHODS: We performed WGS surveillance to identify and characterize clusters of genetically-related Pseudomonas aeruginosa infections during a 24-month period. ML of the EHR was used to identify potential transmission routes. A manual review of the EHR was performed by an infection preventionist to determine the most likely route and results were compared to the ML algorithm. RESULTS: We identified a cluster of 6 genetically related P. aeruginosa cases that occurred during a 7-month period. The ML algorithm identified gastroscopy as a potential transmission route for 4 of the 6 patients. Manual EHR review confirmed gastroscopy as the most likely route for 5 patients. This transmission route was confirmed by identification of a genetically-related P. aeruginosa incidentally cultured from a gastroscope used on 4of the 5 patients. Three infections, 2 of which were blood stream infections, could have been prevented if the ML algorithm had been running in real-time. CONCLUSIONS: WGS surveillance combined with a ML algorithm of the EHR identified a previously undetected outbreak of gastroscope-associated P. aeruginosa infections. These results underscore the value of WGS surveillance and ML of the EHR for enhancing outbreak detection in hospitals and preventing serious infections.


Assuntos
Infecção Hospitalar , Infecções por Pseudomonas , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Gastroscópios , Humanos , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , Estudos Retrospectivos , Sequenciamento Completo do Genoma
7.
Emerg Infect Dis ; 26(2): 366-369, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961306

RESUMO

We describe 2 human cases of infection with a new Neisseria species (putatively N. brasiliensis), 1 of which involved bacteremia. Genomic analyses found that both isolates were distinct strains of the same species, were closely related to N. iguanae, and contained a capsule synthesis operon similar to N. meningitidis.


Assuntos
Infecções Meningocócicas/diagnóstico , Neisseria/isolamento & purificação , Idoso , Brasil , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neisseria/genética
8.
J Clin Microbiol ; 58(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32554477

RESUMO

Carbapenem-nonsusceptible Citrobacter spp. (CNSC) are increasingly recognized as health care-associated pathogens. Information regarding their clinical epidemiology, genetic diversity, and mechanisms of carbapenem resistance is lacking. We examined microbiology records of adult patients at the University of Pittsburgh Medical Center (UMPC) Presbyterian Hospital (PUH) from 2000 to 2018 for CNSC, as defined by ertapenem nonsusceptibility. Over this time frame, the proportion of CNSC increased from 4% to 10% (P = 0.03), as did daily defined carbapenem doses/1,000 patient days (6.52 to 34.5; R2 = 0.831; P < 0.001), which correlated with the observed increase in CNSC (lag = 0 years; R2 = 0.660). Twenty CNSC isolates from 19 patients at PUH and other UPMC hospitals were available for further analysis, including whole-genome short-read sequencing and additional antimicrobial susceptibility testing. Of the 19 patients, nearly all acquired CNSC in the health care setting and over half had polymicrobial cultures containing at least one other organism. Among the 20 CNSC isolates, Citrobacter freundii was the predominant species identified (60%). CNSC genomes were compared with genomes of carbapenem-susceptible Citrobacter spp. from UPMC and with other publicly available CNSC genomes. Isolates carrying genes encoding carbapenemases (blaKPC-2,blaKPC-3, and blaNDM-1) were also long-read sequenced, and their carbapenemase-encoding plasmid sequences were compared with one another and with publicly available sequences. Phylogenetic analysis of 102 UPMC Citrobacter genomes showed that CNSC from our setting did not cluster together. Similarly, a global phylogeny of 64 CNSC genomes showed a diverse population structure. Our findings suggest that both local and global CNSC populations are genetically diverse and that CNSC harbor carbapenemase-encoding plasmids found in other Enterobacterales.


Assuntos
Carbapenêmicos , Infecções por Enterobacteriaceae , Adulto , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Citrobacter/genética , Atenção à Saúde , Infecções por Enterobacteriaceae/epidemiologia , Genômica , Humanos , Filogenia , beta-Lactamases/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-31636064

RESUMO

OXA-232 is an OXA-48-group class D ß-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying blaOXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 µg/ml to 512 µg/ml and the meropenem MIC increased from 0.125 µg/ml to 32 µg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, blaOXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.


Assuntos
Proteínas de Bactérias/biossíntese , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Carbapenêmicos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Ertapenem/farmacologia , Resistência beta-Lactâmica , beta-Lactamases/biossíntese , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Genes Bacterianos , Humanos , Masculino , Mutação , Porinas/genética , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
10.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474392

RESUMO

Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here, we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested phages were tested for lytic activity against the same 32 isolates. Temperate phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that Burkholdera cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.


Assuntos
Bacteriófagos , Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia , Humanos , Prófagos/genética , Genoma Viral , Burkholderia/genética , Complexo Burkholderia cepacia/genética
11.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328162

RESUMO

Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested prophages were tested for lytic activity against the same 32 isolates. Lytic phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes, and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that B. cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.

12.
Infect Control Hosp Epidemiol ; 45(2): 144-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130169

RESUMO

OBJECTIVE: To evaluate the utility of selective reactive whole-genome sequencing (WGS) in aiding healthcare-associated cluster investigations. DESIGN: Mixed-methods quality-improvement study. SETTING: Thes study was conducted across 8 acute-care facilities in an integrated health system. METHODS: We analyzed healthcare-associated coronavirus disease 2019 (COVID-19) clusters between May 2020 and July 2022 for which facility infection prevention and control (IPC) teams selectively requested reactive WGS to aid the epidemiologic investigation. WGS was performed with real-time results provided to IPC teams, including genetic relatedness of sequenced isolates. We conducted structured interviews with IPC teams on the informativeness of WGS for transmission investigation and prevention. RESULTS: In total, 8 IPC teams requested WGS to aid the investigation of 17 COVID-19 clusters comprising 226 cases and 116 (51%) sequenced isolates. Of these, 16 (94%) clusters had at least 1 WGS-defined transmission event. IPC teams hypothesized transmission pathways in 14 (82%) of 17 clusters and used data visualizations to characterize these pathways in 11 clusters (65%). The teams reported that in 15 clusters (88%), WGS identified a transmission pathway; the WGS-defined pathway was not one that was predicted by epidemiologic investigation in 7 clusters (41%). WGS changed the understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in 8 clusters (47%) and altered infection prevention interventions in 8 clusters (47%). CONCLUSIONS: Selectively utilizing reactive WGS helped identify cryptic SARS-CoV-2 transmission pathways and frequently changed the understanding and response to SARS-CoV-2 outbreaks. Until WGS is widely adopted, a selective reactive WGS approach may be highly impactful in response to healthcare-associated cluster investigations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Sequenciamento Completo do Genoma/métodos , Surtos de Doenças , Hospitais
13.
Int J Infect Dis ; 142: 106971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373647

RESUMO

OBJECTIVES: New Delhi metallo-ß-lactamase (NDM) is an emergent mechanism of carbapenem resistance associated with high mortality and limited treatment options. Because the blaNDM resistance gene is often carried on plasmids, traditional infection prevention and control (IP&C) surveillance methods and reactive whole genome sequencing (WGS) may not detect plasmid transfer in multispecies outbreaks. METHODS: Initial outbreak detection of NDM-producing Enterobacterales identified at an acute care hospital occurred via traditional IP&C methods and was supplemented by real-time WGS surveillance performed weekly. To resolve NDM-encoding plasmids, we performed long-read sequencing and constructed hybrid assemblies. WGS data for suspected outbreaks was shared with the IP&C team for assessment and intervention. RESULTS: We observed a multispecies outbreak of NDM-5-producing Enterobacterales isolated from 15 patients between February 2021 and February 2023. The 19 clinical and surveillance isolates sequenced included 7 bacterial species encoding the same NDM-5 plasmid. WGS surveillance and epidemiologic investigation characterized 10 horizontal plasmid transfer events and 6 bacterial transmission events between patients in varying hospital units. CONCLUSIONS: Our investigation revealed a complex, multispecies outbreak of NDM involving multiple plasmid transfer and bacterial transmission events. We highlight the utility of combining traditional IP&C and prospective genomic methods in identifying and containing plasmid-associated outbreaks.


Assuntos
Gammaproteobacteria , beta-Lactamases , Humanos , Estudos Prospectivos , Plasmídeos/genética , beta-Lactamases/genética , Hospitais , Genômica , Klebsiella pneumoniae , Surtos de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
14.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746387

RESUMO

Background: Vancomycin-resistant enterococcal (VRE) infections pose significant challenges in healthcare. Transmission dynamics of VRE are complex, often involving patient colonization and subsequent transmission through various healthcare-associated vectors. We utilized a whole genome sequencing (WGS) surveillance program at our institution to better understand the contribution of clinical and colonizing isolates to VRE transmission. Methods: We performed whole genome sequencing on 352 VRE clinical isolates collected over 34 months and 891 rectal screening isolates collected over a 9-month nested period, and used single nucleotide polymorphisms to assess relatedness. We then performed a geo-temporal transmission analysis considering both clinical and rectal screening isolates compared with clinical isolates alone, and calculated 30-day outcomes of patients. Results: VRE rectal carriage constituted 87.3% of VRE acquisition, with an average monthly acquisition rate of 7.6 per 1000 patient days. We identified 185 genetically related clusters containing 2-42 isolates and encompassing 69.6% of all isolates in the dataset. The inclusion of rectal swab isolates increased the detection of clinical isolate clusters (from 53% to 67%, P<0.01). Geo-temporal analysis identified hotspot locations of VRE transmission. Patients with clinical VRE isolates that were closely related to previously sampled rectal swab isolates experienced 30-day ICU admission (17.5%), hospital readmission (9.2%), and death (13.3%). Conclusions: Our findings describe the high burden of VRE transmission at our hospital and shed light on the importance of using WGS surveillance of both clinical and rectal screening isolates to better understand the transmission of this pathogen. This study highlights the potential utility of incorporating WGS surveillance of VRE into routine hospital practice for improving infection prevention and patient safety.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38836046

RESUMO

Objective: Prior studies evaluating the impact of discontinuation of contact precautions (DcCP) on methicillin-resistant Staphylococcus aureus (MRSA) outcomes have characterized all healthcare-associated infections (HAIs) rather than those likely preventable by contact precautions. We aimed to analyze the impact of DcCP on the rate of MRSA HAI including transmission events identified through whole genome sequencing (WGS) surveillance. Design: Quasi experimental interrupted time series. Setting: Acute care medical center. Participants: Inpatients. Methods: The effect of DcCP (use of gowns and gloves) for encounters among patients with MRSA carriage was evaluated using time series analysis of MRSA HAI rates from January 2019 through December 2022, compared to WGS-defined attributable transmission events before and after DcCP in December 2020. Results: The MRSA HAI rate was 4.22/10,000 patient days before and 2.98/10,000 patient days after DcCP (incidence rate ratio [IRR] 0.71 [95% confidence interval 0.56-0.89]) with a significant immediate decrease (P = .001). There were 7 WGS-defined attributable transmission events before and 11 events after DcCP (incident rate ratio 0.90 [95% confidence interval 0.30-2.55]). Conclusions: DcCP did not result in an increase in MRSA HAI or, in WGS-defined attributable transmission events. Comprehensive analyses of the effect of transmission prevention measures should include outcomes specifically measuring transmission-associated HAI.

16.
JAC Antimicrob Resist ; 5(2): dlad022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36968951

RESUMO

Objectives: The availability of new ß-lactam/ß-lactamase inhibitors ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam have redefined contemporary treatment of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) infections. We aimed to characterize and contrast the in vitro activity of these agents against genetically diverse KPC-Kp clinical isolates. Methods: We analysed genomes of 104 non-consecutive KPC-Kp isolates and compared the in vitro antibiotic activity by KPC subtype and ompK36 genotype. MICs were determined in triplicate by CLSI methods. Twenty representative isolates were selected for time-kill analyses against physiological steady-state and trough concentrations, as well as 4× MIC for each agent. Results: Fifty-eight percent and 42% of isolates harboured KPC-2 and KPC-3, respectively. OmpK36 mutations were more common among KPC-2- compared with KPC-3-producing Kp (P < 0.0001); mutations were classified as IS5 insertion, glycine-aspartic acid insertion at position 134 (GD duplication) and other mutations. Compared to isolates with WT ompK36, ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam MICs were elevated for isolates with IS5 by 2-, 4- and 16-fold, respectively (P < 0.05 for each). Against isolates with GD duplication, imipenem/relebactam and meropenem/vaborbactam MICs were increased, but ceftazidime/avibactam MICs were not. In time-kill studies, ceftazidime/avibactam-mediated killing correlated with ceftazidime/avibactam MICs, and did not vary across ompK36 genotypes. Imipenem/relebactam was not bactericidal against any isolate at trough concentrations. At steady-state imipenem/relebactam concentrations, regrowth occurred more commonly for isolates with IS5 mutations. Log-kills were lower in the presence of meropenem/vaborbactam for isolates with GD duplication compared with IS5 mutations. Conclusions: Our investigation identified key genotypes that attenuate, to varying degrees, the in vitro activity for each of the new ß-lactam/ß-lactamase inhibitors. Additional studies are needed to translate the importance of these observations into clinical practice.

17.
JAC Antimicrob Resist ; 5(5): dlad113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37901589

RESUMO

Objectives: Ceftazidime/avibactam and meropenem/vaborbactam are preferred agents for Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) infections and are often used in combination with other agents. We aimed to characterize the synergy of combinations against KPC-Kp with varying ompK36 genotypes. Methods: KPC-Kp that harboured ompK36 WT, IS5 or glycine-aspartic acid duplication (GD) genotypes were selected. MICs were determined in triplicate. Synergy was assessed by time-kill assays for ceftazidime/avibactam and meropenem/vaborbactam in combination with colistin, gentamicin, tigecycline, meropenem or fosfomycin against 1 × 108 cfu/mL KPC-Kp. Results: KPC-Kp harboured ompK36 WT (n = 5), IS5 (n = 5) or GD (n = 5); 11 were KPC-2 and 4 were KPC-3. All were susceptible to ceftazidime/avibactam and meropenem/vaborbactam. In time-kill analysis, ceftazidime/avibactam and meropenem/vaborbactam 1 × MIC exhibited mean 24 h log-kills of -2.01 and -0.84, respectively. Ceftazidime/avibactam was synergistic in combination with colistin independent of ompK36 genotype. Ceftazidime/avibactam combinations impacted by porin mutations (compared to WT) were meropenem (-5.18 versus -6.62 mean log-kill, P < 0.001) and fosfomycin (-3.98 versus -6.58, P = 0.058). Mean log-kills with meropenem/vaborbactam were greatest in combination with gentamicin (-5.36). In the presence of porin mutations, meropenem/vaborbactam killing activity was potentiated by the addition of colistin (-6.65 versus -0.70, P = 0.03) and fosfomycin (-3.12 versus 1.54, P = 0.003). Conclusions: Our results shed new light on the synergy of ceftazidime/avibactam and meropenem/vaborbactam combinations against KPC-Kp with or without porin mutations. Killing activity of ceftazidime/avibactam with other cell wall active agents was decreased against isolates with porin mutations. On the other hand, some meropenem/vaborbactam combinations demonstrated enhanced killing in the presence of porin mutations.

18.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168243

RESUMO

Escherichia coli belonging to sequence type ST131 constitute a globally distributed pandemic lineage that causes multidrug-resistant extra-intestinal infections. ST131 E. coli frequently produce extended-spectrum ß-lactamases (ESBLs), which confer resistance to many ß-lactam antibiotics and make infections difficult to treat. We sequenced the genomes of 154 ESBL-producing E. coli clinical isolates belonging to the ST131 lineage from patients at the University of Pittsburgh Medical Center (UPMC) between 2004 and 2018. Isolates belonged to the well described ST131 clades A (8%), B (3%), C1 (33%), and C2 (54%). An additional four isolates belonged to another distinct subclade within clade C and encoded genomic characteristics that have not been previously described. Time-dated phylogenetic analysis estimated that the most recent common ancestor (MRCA) for all clade C isolates from UPMC emerged around 1989, consistent with previous studies. We identified multiple genes potentially under selection in clade C, including the cell wall assembly gene ftsI, the LPS biosynthesis gene arnC, and the yersiniabactin uptake receptor fyuA. Diverse ESBL genes belonging to the blaCTX-M, blaSHV, and blaTEM families were identified; these genes were found at varying numbers of loci and in variable numbers of copies across isolates. Analysis of ESBL flanking regions revealed diverse mobile elements that varied by ESBL type. Overall, our findings show that ST131 subclades C1 and C2 dominated and were stably maintained among patients in the same hospital and uncover possible signals of ongoing adaptation within the clade C ST131 lineage.

19.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131775

RESUMO

We describe two cases of XDR Pseudomonas aeruginosa infection caused by a strain of public health concern recently associated with a nationwide outbreak of contaminated artificial tears. Both cases were detected through database review of genomes in the Enhanced Detection System for Hospital-Associated Transmission (EDS-HAT), a routine genome sequencing-based surveillance program. We generated a high-quality reference genome for the outbreak strain from one of the case isolates from our center and examined the mobile elements encoding bla VIM-80 and bla GES-9 carbapenemases. We then used publicly available P. aeruginosa genomes to explore the genetic relatedness and antimicrobial resistance genes of the outbreak strain.

20.
medRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693518

RESUMO

Background: New Delhi metallo-ß-lactamase (NDM) represents an emergent mechanism of carbapenem resistance associated with high mortality and limited antimicrobial treatment options. Because the blaNDM resistance gene is often carried on plasmids, traditional infection prevention and control (IP&C) surveillance methods like speciation, antimicrobial resistance testing, and reactive whole genome sequencing (WGS) may not detect plasmid transfer in multispecies outbreaks. Methods: Initial outbreak detection of NDM-producing Enterobacterales identified at an acute care hospital occurred via traditional IP&C methods and was supplemented by real-time WGS surveillance, which was performed weekly using the Illumina platform. To resolve NDM-encoding plasmids, we performed long-read Oxford Nanopore sequencing and constructed hybrid assemblies using Illumina and Nanopore sequencing data. Reports of relatedness between NDM-producing organisms and reactive WGS for suspected outbreaks were shared with the IP&C team for assessment and intervention. Findings: We observed a multispecies outbreak of NDM-5-producing Enterobacterales isolated from 15 patients between February 2021 and February 2023. The 19 clinical and surveillance isolates sequenced included seven bacterial species and each encoded the same NDM-5 plasmid, which showed high homology to NDM plasmids previously observed in Asia. WGS surveillance and epidemiologic investigation characterized ten horizontal plasmid transfer events and six bacterial transmission events between patients housed in varying hospital units. Transmission prevention focused on enhanced observation and adherence to basic infection prevention measures. Interpretation: Our investigation revealed a complex, multispecies outbreak of NDM that involved multiple plasmid transfer and bacterial transmission events, increasing the complexity of outbreak identification and transmission prevention. Our investigation highlights the utility of combining traditional IP&C and prospective genomic methods in identifying and containing plasmid-associated outbreaks. Funding: This work was funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) (R01AI127472) (R21AI1783691).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA