Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(12): e2220816120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913588

RESUMO

Methanol is an ideal feedstock for chemical and biological manufacturing. Constructing an efficient cell factory is essential for producing complex compounds through methanol biotransformation, in which coordinating methanol use and product synthesis is often necessary. In methylotrophic yeast, methanol utilization mainly occurs in peroxisomes, which creates challenges in driving the metabolic flux toward product biosynthesis. Here, we observed that constructing the cytosolic biosynthesis pathway resulted in compromised fatty alcohol production in the methylotrophic yeast Ogataea polymorpha. Alternatively, peroxisomal coupling of fatty alcohol biosynthesis and methanol utilization significantly improved fatty alcohol production by 3.9-fold. Enhancing the supply of precursor fatty acyl-CoA and cofactor NADPH in the peroxisomes by global metabolic rewiring further improved fatty alcohol production by 2.5-fold and produced 3.6 g/L fatty alcohols from methanol under fed-batch fermentation. We demonstrated that peroxisome compartmentalization is helpful for coupling methanol utilization and product synthesis, and with this approach, constructing efficient microbial cell factories for methanol biotransformation is feasible.


Assuntos
Álcoois Graxos , Metanol , Álcoois Graxos/metabolismo , Metanol/metabolismo , Peroxissomos/metabolismo , Fermentação , Engenharia Metabólica/métodos
2.
Nat Chem Biol ; 19(4): 401-415, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914860

RESUMO

Modular polyketide synthases (PKSs) run catalytic reactions over dozens of steps in a highly orchestrated manner. To accomplish this synthetic feat, they form megadalton multienzyme complexes that are among the most intricate proteins on earth. Polyketide products are of elaborate chemistry with molecular weights of usually several hundred daltons and include clinically important drugs such as erythromycin (antibiotic), rapamycin (immunosuppressant) and epothilone (anticancer drug). The term 'modular' refers to a hierarchical structuring of modules and domains within an overall assembly line arrangement, in which PKS organization is colinearly translated into the polyketide structure. New structural information obtained during the past few years provides substantial direct insight into the orchestration of catalytic events within a PKS module and leads to plausible models for synthetic progress along assembly lines. In light of these structural insights, the PKS engineering field is poised to enter a new era of engineering.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Eritromicina , Antibacterianos , Sirolimo
3.
Angew Chem Int Ed Engl ; 63(4): e202312476, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37856285

RESUMO

Megasynthases, such as type I fatty acid and polyketide synthases (FASs and PKSs), are multienzyme complexes responsible for producing primary metabolites and complex natural products. Fatty acids (FAs) and polyketides (PKs) are built by assembling and modifying small acyl moieties in a stepwise manner. A central aspect of FA and PK biosynthesis involves the shuttling of substrates between the domains of the multienzyme complex. This essential process is mediated by small acyl carrier proteins (ACPs). The ACPs must navigate to the different catalytic domains within the multienzyme complex in a particular order to guarantee the fidelity of the biosynthesis pathway. However, the precise mechanisms underlying ACP-mediated substrate shuttling, particularly the factors contributing to the programming of the ACP movement, still need to be fully understood. This Review illustrates the current understanding of substrate shuttling, including concepts of conformational and specificity control, and proposes a confined ACP movement within type I megasynthases.


Assuntos
Proteína de Transporte de Acila , Policetídeos , Proteína de Transporte de Acila/metabolismo , Ácidos Graxos , Complexos Multienzimáticos/química , Policetídeos/metabolismo , Policetídeo Sintases/metabolismo
4.
Nat Prod Rep ; 38(7): 1409, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235518

RESUMO

Correction for 'Engineering strategies for rational polyketide synthase design' by Maja Klaus et al., Nat. Prod. Rep., 2018, 35, 1070-1081, DOI: 10.1039/C8NP00030A.

5.
Biospektrum (Heidelb) ; 27(3): 250-253, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-33994672

RESUMO

The Corona pandemic has painfully taught us the threat of new pathogens in a globalized world and how vital modern vaccines are. Platform technologies play an important role in the discovery of new vaccines as reducing the time for the development dramatically - time that saves lives. Here, we present the protein Dodecin and how it may be utilized as a versatile platform technology to produce cheap and robust new vaccines for everyone in all parts of the world.

6.
Microbiology (Reading) ; 165(10): 1095-1106, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31339487

RESUMO

Dodecins are small flavin-binding proteins that are widespread amongst haloarchaeal and bacterial species. Haloarchaeal dodecins predominantly bind riboflavin, while bacterial dodecins have been reported to bind riboflavin-5'-phosphate, also called flavin mononucleotide (FMN), and the FMN derivative, flavin adenine dinucleotide (FAD). Dodecins form dodecameric complexes and represent buffer systems for cytoplasmic flavins. In this study, dodecins of the bacteria Streptomyces davaonensis (SdDod) and Streptomyces coelicolor (ScDod) were investigated. Both dodecins showed an unprecedented low affinity for riboflavin, FMN and FAD when compared to other bacterial dodecins. Significant binding of FMN and FAD occurred at relatively low temperatures and under acidic conditions. X-ray diffraction analyses of SdDod and ScDod revealed that the structures of both Streptomyces dodecins are highly similar, which explains their similar binding properties for FMN and FAD. In contrast, SdDod and ScDod showed very different properties with regard to the stability of their dodecameric complexes. Site-directed mutagenesis experiments revealed that a specific salt bridge (D10-K62) is responsible for this difference in stability.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Streptomyces coelicolor/química , Streptomyces/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estabilidade Proteica , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Especificidade da Espécie , Streptomyces/genética , Streptomyces coelicolor/genética , Temperatura
7.
Chembiochem ; 20(18): 2298-2321, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-30908841

RESUMO

De novo biosynthesis of fatty acids is an iterative process requiring strict regulation of the lengths of the produced fatty acids. In this review, we focus on the factors determining chain lengths in fatty acid biosynthesis. In a nutshell, the process of chain-length regulation can be understood as the output of a chain-elongating C-C bond forming reaction competing with a terminating fatty acid release function. At the end of each cycle in the iterative process, the synthesizing enzymes need to "decide" whether the growing chain is to be elongated through another cycle or released as the "mature" fatty acid. Recent research has shed light on the factors determining fatty acid chain length and has also achieved control over chain length for the production of the technologically interesting short-chain (C4 -C8 ) and medium-chain (C10 -C14 ) fatty acids.


Assuntos
Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo I/química , Ácidos Graxos/biossíntese , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Animais , Bactérias/enzimologia , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/química , Humanos , Estrutura Molecular , Plantas/enzimologia , Domínios Proteicos , Engenharia de Proteínas , Saccharomyces cerevisiae/enzimologia
8.
Nat Chem Biol ; 13(4): 360-362, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218911

RESUMO

Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes into the reaction chambers and demonstrated their capability to convert acyl-ACP or acyl-CoA from canonical fatty acid biosynthesis to short/medium-chain fatty acids and methyl ketones.


Assuntos
Basidiomycota/enzimologia , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/metabolismo , Cetonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Biocatálise , Ácido Graxo Sintase Tipo I/química , Ácidos Graxos/química , Cetonas/química , Modelos Moleculares , Estrutura Molecular
9.
Nat Chem Biol ; 13(4): 363-365, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218912

RESUMO

In this study, we engineered fatty acid synthases (FAS) for the biosynthesis of short-chain fatty acids and polyketides, guided by a combined in vitro and in silico approach. Along with exploring the synthetic capability of FAS, we aim to build a foundation for efficient protein engineering, with the specific goal of harnessing evolutionarily related megadalton-scale polyketide synthases (PKS) for the tailored production of bioactive natural compounds.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Policetídeos/metabolismo , Engenharia de Proteínas , Corynebacterium/enzimologia , Ácido Graxo Sintases/genética , Modelos Moleculares , Estrutura Molecular , Policetídeos/química
10.
Nat Prod Rep ; 35(10): 1070-1081, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29938731

RESUMO

Covering: mid 1990s to 2018 Over the last two decades, diverse approaches have been explored to generate new polyketides by engineering polyketide synthases (PKSs). Although it has been proven possible to produce new compounds by designed PKSs, engineering strategies failed to make polyketides available via widely applicable rules and protocols. Still, organic synthetic routes have to be employed whenever new polyketides are needed for applications in medicine, agriculture, and industry. In light of the rising demand for commodity products from feedstock and for fast and cheap access to pharmaceutical compounds, the need for harnessing PKSs to produce such molecules is more urgent than ever before. In this review, we focus on a multitude of approaches to engineer modular PKSs by swapping and replacing PKS modules and domains, which we analyze in the light of recent structural and biochemical data. We conclude with an outlook on possible strategies on how to increase success rates of PKS engineering in future.


Assuntos
Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Policetídeo Sintases/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Microbiology (Reading) ; 164(6): 908-919, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29856311

RESUMO

Genes encoding dodecin proteins are present in almost 20 % of archaeal and in more than 50 % of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5'-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown. In this study, we set out to investigate the relevance of dodecins for flavin metabolism and oxidative stress management in the phylogenetically related bacteria Streptomyces coelicolor and Streptomyces davawensis. Additionally, we explored the role of dodecins with regard to resistance against the antibiotic roseoflavin, a riboflavin analogue produced by S. davawensis. Our results show that the dodecin of S. davawensis predominantly binds FMN and is neither involved in roseoflavin biosynthesis nor in roseoflavin resistance. In contrast to S. davawensis, growth of S. coelicolor was not reduced in the presence of plumbagin, a compound, which induces oxidative stress. Plumbagin treatment stimulated expression of the dodecin gene in S. davawensis but not in S. coelicolor. Deletion of the dodecin gene in S. davawensis generated a recombinant strain which, in contrast to the wild-type, was fully resistant to plumbagin. Subsequent metabolome analyses revealed that the S. davawensis dodecin deletion strain exhibited a very different stress response when compared to the wild-type indicating that dodecins broadly affect cellular physiology.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Riboflavina/análogos & derivados , Streptomyces/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mononucleotídeo de Flavina/metabolismo , Deleção de Genes , Expressão Gênica , Metaboloma , Estresse Oxidativo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Riboflavina/metabolismo , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces/fisiologia , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/fisiologia
13.
Beilstein J Org Chem ; 13: 1204-1211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694866

RESUMO

Megasynthases are large multienzyme proteins that produce a plethora of important natural compounds by catalyzing the successive condensation and modification of precursor units. Within the class of megasynthases, polyketide synthases (PKS) are responsible for the production of a large spectrum of bioactive polyketides (PK), which have frequently found their way into therapeutic applications. Rational engineering approaches have been performed during the last 25 years that seek to employ the "assembly-line synthetic concept" of megasynthases in order to deliver new bioactive compounds. Here, we highlight PKS engineering strategies in the light of the newly emerging structural information on megasynthases, and argue that fatty acid synthases (FAS) are and will be valuable objects for further developing this field.

14.
Chembiochem ; 15(17): 2489-93, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25318851

RESUMO

Step-by-step to great diversity: With the potential to synthesize multi-millions of bioactive compounds, modular polyketide synthases (PKSs) are of great importance. In this Highlight, new developments in the understanding of the structure and function of these proteins are reviewed.


Assuntos
Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Animais , Humanos , Modelos Moleculares
15.
Commun Biol ; 7(1): 92, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216676

RESUMO

Acyl carrier protein (ACP) is the work horse of polyketide (PKS) and fatty acid synthases (FAS) and acts as a substrate shuttling domain in these mega enzymes. In fungi, FAS forms a 2.6 MDa symmetric assembly with six identical copies of FAS1 and FAS2 polypeptides. However, ACP spatial distribution is not restricted by symmetry owing to the long and flexible loops that tether the shuttling domain to its corresponding FAS2 polypeptide. This symmetry breaking has hampered experimental investigation of substrate shuttling route in fungal FAS. Here, we develop a protein engineering and expression method to isolate asymmetric fungal FAS proteins containing odd numbers of ACP domains. Electron cryomicroscopy (cryoEM) observation of the engineered complex reveals a non-uniform distribution of the substrate shuttling domain relative to its corresponding FAS2 polypeptide at 2.9 Å resolution. This work lays the methodological foundation for experimental study of ACP shuttling route in fungi.


Assuntos
Proteína de Transporte de Acila , Saccharomyces cerevisiae , Animais , Cavalos , Proteína de Transporte de Acila/química , Saccharomyces cerevisiae/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/química , Proteínas Fúngicas/metabolismo , Peptídeos/metabolismo
16.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 232-246, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488730

RESUMO

Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.


Assuntos
Proteínas de Membrana , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos , Processamento de Imagem Assistida por Computador
17.
J Biol Chem ; 287(21): 17637-17644, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22451648

RESUMO

Dodecins, a group of flavin-binding proteins with a dodecameric quaternary structure, are able to incorporate two flavins within each of their six identical binding pockets building an aromatic tetrade with two tryptophan residues. Dodecin from the archaeal Halobacterium salinarum is a riboflavin storage device. We demonstrate that unwanted side reactions induced by reactive riboflavin species and degradation of riboflavin are avoided by ultrafast depopulation of the reactive excited state of riboflavin. Intriguingly, in this process, the staggered riboflavin dimers do not interact in ground and photoexcited states. Rather, within the tetrade assembly, each riboflavin is kept under the control of the respective adjacent tryptophan, which suggests that the stacked arrangement is a matter of optimizing the flavin load. We further identify an electron transfer in combination with a proton transfer as a central element of the effective excited state depopulation mechanism. Structural and functional comparisons of the archaeal dodecin with bacterial homologs reveal diverging evolution. Bacterial dodecins bind the flavin FMN instead of riboflavin and exhibit a clearly different binding pocket design with inverse incorporations of flavin dimers. The different adoption of flavin changes photochemical properties, making bacterial dodecin a comparably less efficient quencher of flavins. This supports a functional role different for bacterial and archaeal dodecins.


Assuntos
Proteínas Arqueais/química , Bactérias/química , Proteínas de Bactérias/química , Mononucleotídeo de Flavina/química , Halobacterium salinarum/química , Riboflavina/química , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Evolução Molecular , Mononucleotídeo de Flavina/metabolismo , Halobacterium salinarum/metabolismo , Ligação Proteica , Riboflavina/metabolismo , Especificidade da Espécie , Triptofano/química , Triptofano/metabolismo
18.
Proc Natl Acad Sci U S A ; 107(20): 9164-9, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20231485

RESUMO

Yeast fatty acid synthase (FAS) is a 2.6-MDa barrel-shaped multienzyme complex, which carries out cyclic synthesis of fatty acids. By electron cryomicroscopy of single particles we obtained a three-dimensional map of yeast FAS at 5.9-A resolution. Compared to the crystal structures of fungal FAS, the EM map reveals major differences and new features that indicate a considerably different arrangement of the complex in solution compared to the crystal structures, as well as a high degree of variance inside the barrel. Distinct density regions in the reaction chambers next to each of the catalytic domains fitted the substrate-binding acyl carrier protein (ACP) domain. In each case, this resulted in the expected distance of approximately 18 A from the ACP substrate-binding site to the active site of the catalytic domains. The multiple, partially occupied positions of the ACP within the reaction chamber provide direct structural insight into the substrate-shuttling mechanism of fatty acid synthesis in this large cellular machine.


Assuntos
Proteína de Transporte de Acila/química , Ácido Graxo Sintases/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteína de Transporte de Acila/ultraestrutura , Microscopia Crioeletrônica/métodos , Ácido Graxo Sintases/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
19.
ACS Chem Biol ; 18(7): 1500-1509, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37403433

RESUMO

Modular polyketide synthases (PKSs) are attractive targets for the directed, biosynthetic production of platform chemicals and pharmaceuticals by protein engineering. In this study, we analyze docking domains from the 6-deoxyerythronolide B synthase, SYNZIP domains, and the SpyCatcher:SpyTag complex as engineering tools to couple the polypeptides VemG and VemH to functional venemycin synthases. Our data show that the high-affinity interaction or covalent connection of modules, enabled by SYNZIP domains and the SpyCatcher:SpyTag complex, can be advantageous, e.g., in synthesis at low protein concentrations, but their rigidity and steric demand decrease synthesis rates. However, we also show that efficiency can be recovered when inserting a hinge region distant from the rigid interface. This study demonstrates that engineering approaches should take the conformational properties of modular PKSs into account and establishes a three-polypeptide split venemycin synthase as an exquisite in vitro platform for the analysis and engineering of modular PKSs.


Assuntos
Policetídeo Sintases , Engenharia de Proteínas , Policetídeo Sintases/metabolismo
20.
mBio ; 14(4): e0041423, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409813

RESUMO

Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus Aspergillus, including Aspergillus fumigatus, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for Aspergillus nidulans (AnUGP). To understand the molecular basis of AnUGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native AnUGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed ß-helix oligomerization domain. AnUGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for AnUGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in Aspergillus species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus Aspergillus nidulans reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA