Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 60(7): 3971-3985, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33929588

RESUMO

PURPOSE: Childhood malnutrition is a multifactorial disease, responsible for nearly half of all deaths in children under five. Lately, the probable association of a dysbiotic gut to malnutrition is also being eagerly investigated. The current study is an attempt to investigate this purported association through assessing the abundance of major gut bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria), probionts (Bifidobacteria and Lactobacillus), butyrogens (Faecalibacterium and Roseburia) and pathogens (Escherichia and Klebsiella). METHODS: The study was conducted in the suburbs of Chandigarh, India in the year 2017. The children enrolled in the study were part of Anganwadis (Rural Child Care Centres) set up under Integrated Child Development Scheme (ICDS) of Government of India where community-based management approach is being widely used for treatment of malnutrition. We used qPCR based absolute quantification as well as the 16S rRNA amplicon sequencing approach for our study. The study population included 30 children in the age group of 2-5 years who were categorized into three groups Healthy, Moderate Acute Malnutrition (MAM) and Severe Acute Malnutrition (SAM), with 10 children in each group. The selection of participants was made based on Z scores. Further, statistical tools like the One-way ANOVA, PCA and PLSDA were employed to analyze and compare the gut bacterial profile. RESULTS: Our investigation through the qPCR (Absolute quantification) approach revealed a significantly higher abundance of Actinobacteria in healthy, in comparison to children suffering from Severe Acute Malnutrition (SAM). Consequently, the same trend was also reflected with respect to Bifidobacterium, a prominent member of the Actinobacteria phylum. Conversely, a significant higher abundance of Lactobacillus with the diminishing nutritional status was recorded. Escherichia showed a significant higher abundance in healthy subjects compared to the malnourished; however, no such difference in abundance of Klebsiella was observed. The other target phyla [Bacteroidetes, Firmicutes and Proteobacteria] and genera (Faecalibacterium and Roseburia) showed differences in abundance; however, these were non-significant. Similarly, the bacterial taxonomy analysis of 16S rRNA gene amplicon sequencing data revealed the higher abundance of phylum Actinobacteria and its member Bifidobacterium with lower prevalence of Lactobacillus in healthy children. CONCLUSION: The pattern of gut microbiota profile in malnourished subjects suggests a dysbiotic gut depleted in Bifidobacteria, a core member of the consortia of beneficial anaerobes of the healthy child gut.


Assuntos
Microbioma Gastrointestinal , Criança , Pré-Escolar , Disbiose , Humanos , Estado Nutricional , Projetos Piloto , RNA Ribossômico 16S/genética
2.
Regul Toxicol Pharmacol ; 101: 1-11, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30367905

RESUMO

Lactobacilli have a long history of safe use in human nutrition, however, inclusion of any new strain, despite its safe usage evidence, warrants proper analysis of its safety and toxicity under the purview of existing regulations. In the present investigation, Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 were evaluated for their safety and toxicity using both in vitro and in vivo approaches. The in vitro assays included mucin degradation, hemolytic activity, biogenic amine production and platelet aggregation assay. The safety was also assessed using acute, subacute and subchronic assays, bacterial translocation studies, intravenous and intravenous administration and genotoxicity assay in murine model. The outcome of this toxicological safety assessment indicated that both the test strains lacked any harmful metabolic activity or any genotoxic effects. Furthermore, the results of oral toxicity studies in mice revealed that short term administration of high cell mass concentration of 1012 cfu/animal as well as long term feeding of the probiotic strains did not alter any hematological, general health parameters or cause any organ specific disorder. Based upon these scientific assessments and supported by long history of safe use, both MTCC 5690 and MTCC 5689 may be considered safe for human consumption.


Assuntos
Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos/toxicidade , Animais , Eritrócitos , Hemólise , Humanos , Masculino , Camundongos , Mucinas/metabolismo , Agregação Plaquetária , Plasma Rico em Plaquetas , Medição de Risco , Testes de Toxicidade , Tiramina/metabolismo
3.
Protein Expr Purif ; 145: 7-13, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29229289

RESUMO

The ability of Lactobacilli to adhere to host epithelial surface and intestinal tracts is important for colonization and persistence of bacteria in the host gut. Extracellular matrix components like fibronectin, mucin, collagen and other adhesion molecules serve as substratum for attachment of bacteria. However, the precise structure, function and mechanism of binding of microbial surface adhesion proteins such as Fibronectin-binding protein (FBP) with host molecules remains unclear. This is primarily due to limitations in high expression of these proteins in biologically active form. To study adhesion of its FBP (64 kDa), the fbp gene of L. acidophilus NCFM was cloned and expressed in E. coli. However, the fibronectin-binding protein expressed in soluble form could not be purified by Ni-NTA affinity chromatography possibly because of partially buried Histidine tag in the recombinant fusion protein. Therefore, the protein was expressed as inclusion bodies (IBs) at 37 °C and solubilized in urea followed by purification in denatured form by Ni-NTA affinity chromatography. The purified denatured protein was refolded in vitro to structurally stable and biologically active form. The conformational properties of the refolded protein were studied by circular dichroism, which showed prominence of α+ ß structural element. The refolded FBP also showed significant binding to human intestinal tissue sections. Our optimized refolding protocol from IBs of this recombinant probiotic FBP led into high amounts of biologically active protein. Our results help in increasing understanding of structure-function relation of surface adhesion proteins and host-microbial interactions.


Assuntos
Adesinas Bacterianas/genética , Clonagem Molecular , Mucosa Intestinal , Lactobacillus acidophilus/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/metabolismo , Escherichia coli/genética , Expressão Gênica , Humanos , Corpos de Inclusão , Redobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
4.
Eur J Nutr ; 57(1): 279-295, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27757592

RESUMO

PURPOSE: Diabetes and obesity are characterized by glucose intolerance, fat deposition, inflammation, and dyslipidemia. Recent reports postulated that distinct gut microbiota alterations were observed in obese/diabetic subjects and modulating gut microbiota beneficially through specific probiotics could be a potential therapeutic option for type 2 diabetes/obesity. Therefore, we attempted to study the efficacy of probiotics of Indian gut origin (Lactobacillus plantarum MTCC5690 and Lactobacillus fermentum MTCC5689) along with a positive control, Lactobacillus rhamnosus (LGG) on glucose/lipid homeostasis in high-fat-diet-induced diabetic animal model. METHODS: C57BL/6J male mice were divided into seven groups (n = 6 per group) comprising feeding on: (1) Normal Pellet Diet (NPD), (2) High-Fat Diet (HFD), (3) HFD with LGG, (4) HFD with MTCC5690, (5) HFD with MTCC5689, (6) HFD with metformin, and 7) HFD with vildagliptin for a period of 6 months. Biochemical markers, glucose tolerance, insulin resistance, and GLP-1 and LPS levels were assessed by standard protocols. Gut integrity was measured by intestinal permeability test. Transcriptional levels of tight junction proteins (TJPs) were probed in small intestinal tissues while inflammatory signals and other pathway specific genes were profiled in liver, visceral adipose tissue, and skeletal muscle. RESULTS: Mice fed with HFD became insulin resistant, glucose intolerant, hyperglycemic, and dyslipidemic. Diabetic mice were characterized to exhibit decreased levels of GLP-1, increased gut permeability, increased circulatory levels of LPS, decrease in the gene expression patterns of intestinal tight junction markers (occludin and ZO-1), and increased proinflammatory gene markers (TNFα and IL6) in visceral fat along with decreased mRNA expression of FIAF and adiponectin. Diabetic mice also exhibited increased mRNA expression of ER stress markers in skeletal muscle. In addition, liver from HFD-fed diabetic mice showed increased gene expressions of proinflammation, lipogenesis, and gluconeogenesis. Probiotic interventions (most prominently the MTCC5689) resisted insulin resistance and development of diabetes in mice under HFD feeding and beneficially modulated all the biochemical and molecular alterations in a mechanistic way in several tissues. The metabolic benefits offered by the probiotics were also more or less similar to that of standard drugs such as metformin and vildagliptin. CONCLUSION: Native probiotic strains MTCC 5690 and MTCC 5689 appear to have potential against insulin resistance and type 2 diabetes with mechanistic, multiple tissue-specific mode of actions.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos/uso terapêutico , Animais , Glicemia/análise , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Dislipidemias/prevenção & controle , Estresse do Retículo Endoplasmático/genética , Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon/sangue , Gluconeogênese/genética , Índia , Inflamação/genética , Lipídeos/sangue , Lipogênese/genética , Lipopolissacarídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
5.
Protein Expr Purif ; 135: 54-60, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499579

RESUMO

Mucins amount to 70% of total proteins present in mammalian mucus and serve as important substrata for bacterial adhesion. In probiotic bacteria such as Lactobacillus plantarum, surface adhesion proteins mediate its adhesion to mucus and adhesion is pivotal in bi-directional host-microbe interactions. Mucus binding (Mub) proteins are a group of bacterial surface adhesion proteins that bind to mucin proteins. The structural framework and functional role of these proteins needs immediate attention but is poorly understood because of their large size, low yield and lack of highly purified protein. The lp_1643 gene of L. plantarum encodes a large Mub protein of 240 kDa and has six mucus binding (Mub) domains in tandem. In this study, the fragment of lp_1643 containing the last two domains with their preceding spacers herein referred to as Mubs5s6 was cloned and expressed in E. coli for probing its functional role in the adhesion of L. plantarum. The protein was expressed with a solubility enhancing maltose binding protein (MBP) fusion tag, yet the MBP-Mubs5s6 protein expressed majorly (>90%) as biologically insoluble inclusion bodies. Thus, extensive optimization of culture conditions was carried out to achieve high level soluble expression (∼70%) of Mubs5s6 protein from its initial low level of solubility. The recombinant protein was purified up to homogeneity by affinity chromatography. Recombinant MBP-Mubs5s6 protein showed strong adhesion potential by binding with human intestinal tissue sections. Our results show a step-by-step hierarchical approach to improve the solubility of difficult-to-express extracellular surface proteins while retaining high functional viability.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Lactobacillus plantarum/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/isolamento & purificação , Aderência Bacteriana , Escherichia coli/genética , Humanos , Secreções Intestinais/química , Secreções Intestinais/metabolismo , Muco/química , Muco/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
6.
Crit Rev Food Sci Nutr ; 57(10): 2042-2056, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25879917

RESUMO

The probiotic potential of lactic acid bacteria primarily point toward colonizing ability of Lactobacilli as the most important attribute for endowing all the known beneficial effects in a host. Lactobacillus species exert health-promoting function in the gastrointestinal tract through various mechanisms such as pathogen exclusion, maintenance of microbial balance, immunomodulation, and other crucial functions. It has been seen that many surface layer proteins are involved in host adhesion, and play significant role in the modification of some signaling pathways within the host cells. Interaction between different bacterial cell surface proteins and host receptor has been imperative for a better understanding of the mechanism through which Lactobacilli exert their health-promoting functions.


Assuntos
Medicina Baseada em Evidências , Microbioma Gastrointestinal/imunologia , Imunomodulação , Controle de Infecções , Lactobacillus/fisiologia , Probióticos/uso terapêutico , Animais , Aderência Bacteriana , Matriz Extracelular/microbiologia , Interações Hospedeiro-Parasita , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillus/imunologia , Interações Microbianas , Muco/microbiologia
7.
Indian J Med Res ; 146(3): 409-419, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29355150

RESUMO

BACKGROUND & OBJECTIVES: Milk proteins play a beneficial role in the regulation of food intake, postprandial glycaemia and enteroendocrine hormone secretions and thus are receiving considerable attention for the management of metabolic inflammatory disorders such as type 2 diabetes mellitus (T2DM). The objective of this study was to evaluate the efficacy of peptide/s obtained from milk proteins (casein and whey) as well as from the milk fermented with Lactobacillus helveticus as secretagogues for gut hormones and to purify and characterize the active peptides. METHODS: Effect of hydrolysates of casein protein (CP) and whey protein (WP) and L. helveticus fermented milk on the expression of proglucagon, pro-gastric inhibitory peptide (GIP) and cholecystokinin (CCK) genes was monitored by real-time quantitative polymerase chain reaction. The active glucagon-like peptide-1 (GLP-1) secretion was also quantitatively measured using ELISA. RESULTS: Hydrolysates of CP and WP as well as fermentates of L. helveticus induced the proglucagon, pro-GIP and CCK expression and secretion of GLP-1 in STC-1 (pGIP/Neo) cells. However, intact casein exhibited maximum GLP-1 secretion and proglucagon expression. Two active peptides (F5 and F7) derived from CP1 and WP3 hydrolysates having the ability to upregulate the GLP-1 secretion by 1.6 and 1.8 folds were obtained, and the mass was found to be 786 and 824 Da, respectively, as determined by electrospray ionization-mass spectrometry. However, no single active peptide from L. helveticus fermented milk could be obtained. INTERPRETATION & CONCLUSIONS: Casein as well as fermentates obtained from L. helveticus fermented milk showed higher potential for GLP-1 induction. These can be explored as novel therapeutics to T2DM effectively after demonstrating their in vivo efficacy in appropriate animal models.


Assuntos
Caseínas/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Peptídeos/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Caseínas/química , Diabetes Mellitus Tipo 2/metabolismo , Ingestão de Alimentos , Fermentação , Humanos , Lactobacillus helveticus/química , Lactobacillus helveticus/metabolismo , Leite/química , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Peptídeos/isolamento & purificação , Hidrolisados de Proteína/química , Hidrolisados de Proteína/uso terapêutico , Proteínas do Soro do Leite/química
8.
Crit Rev Food Sci Nutr ; 56(11): 1777-89, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-25365334

RESUMO

Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.


Assuntos
Indústria Alimentícia , Biologia Sintética/métodos , Biotecnologia , Indústria de Laticínios , Alimentos , Inocuidade dos Alimentos , Engenharia Genética , Genômica , Biologia de Sistemas
9.
Arch Microbiol ; 197(2): 155-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25212764

RESUMO

Adhesion to the human intestinal epithelial cell is considered as one of the important selection criteria of lactobacilli for probiotic attributes. Sixteen Lactobacillus plantarum strains from human origins were subjected for adhesion to extracellular matrix (ECM) components, and their physiochemical characterization, incubation time course and effect of different pH on bacterial adhesion in vitro were studied. Four strains showed significant binding to both fibronectin and mucin. After pretreatment with pepsin and trypsin, the bacterial adhesion to ECM reduced to the level of 50 % and with lysozyme significantly decreased by 65-70 %. Treatment with LiCl also strongly inhibited (90 %) the bacterial adhesion to ECM. Tested strains showed highest binding efficacy at time course of 120 and 180 min. Additionally, the binding of Lp91 to ECM was highest at pH 6 (155 ± 2.90 CFU/well). This study proved that surface layer components are proteinaceous in nature, which contributed in adhesion of lactobacillus strains. Further, the study can provide a better platform for introduction of new indigenous probiotic strains having strong adhesion potential for future use.


Assuntos
Aderência Bacteriana , Matriz Extracelular/microbiologia , Lactobacillus plantarum/fisiologia , Probióticos , Células Epiteliais/microbiologia , Matriz Extracelular/química , Fibronectinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Lactobacillus plantarum/metabolismo , Mucinas/metabolismo
10.
Eur J Nutr ; 53(7): 1465-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24414142

RESUMO

PURPOSE: Inhibitors of intestinal alpha-glucosidases are used therapeutically to treat type 2 diabetes mellitus. Bacteria such as Actinoplanes sp. naturally produce potent alpha-glucosidase inhibitor compounds, including the most widely available drug acarbose. It is not known whether lactic acid bacteria (LAB) colonising the human gut possess inhibitory potential against glucosidases. Hence, the study was undertaken to screen LABs having inherent alpha- and beta-glucosidase inhibitory potential. METHODS: This study isolated, screened, identified and extracted Lactobacillus strains (Lb1-15) from human infant faecal samples determining their inhibitory activity against intestinal maltase, sucrase, lactase and amylase. Lactobacillus reference strains (Ref1-7), a Gram positive control (Ctrl1) and two Gram negative controls (Ctrl2-3), were also analysed to compare activity. RESULTS: Faecal isolates were identified by DNA sequencing, with the majority identified as unique strains of Lactobacillus plantarum. Some strains (L. plantarum, L. fermentum, L. casei and L. rhamnosus) had potent and broad spectrum inhibitory activities (up to 89%; p < 0.001; 500 mg/ml wet weight) comparable to acarbose (up to 88%; p < 0.001; 30 mg/ml). Inhibitory activity was concentration-dependent and was freely available in the supernatant, and was not present in other bacterial genera (Bifidobacterium bifidum and Escherichia coli or Salmonella typhimurium). Interestingly, the potency and spectrum of inhibitory activity across strains of a single species (L. plantarum) differed substantially. Some Lactobacillus extracts had broader spectrum activities than acarbose, effectively inhibiting beta-glucosidase activity (lactase) as well as alpha-glucosidase activities (maltase, sucrase and amylase). Anti-diabetic potential was indicated by the fact that oral gavage with a L. rhamnosus extract (1 g/kg) was able to reduce glucose excursions (Area under curve; 22%; p < 0.05) in rats during a carbohydrate challenge (starch; 2 g/kg). CONCLUSION: These results definitively demonstrate that Lactobacillus strains present in the human gut have alpha- and beta-glucosidase inhibitory activities and can reduce blood glucose responses in vivo. Although the potential use of LAB such as Lactobacillus as a dietary supplement, medicinal food or biotherapeutic for diabetes is uncertain, such an approach might offer advantages over drug therapies in terms of broader spectrum activities and fewer unpleasant side effects. Further characterisation of this bioactivity is warranted, and chronic studies should be undertaken in appropriate animal models or diabetic subjects.


Assuntos
Fezes/microbiologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Intestinos/microbiologia , Lactobacillus/isolamento & purificação , Probióticos , beta-Glucosidase/antagonistas & inibidores , Acarbose/metabolismo , Amilases/antagonistas & inibidores , Animais , Glicemia/metabolismo , DNA Bacteriano/isolamento & purificação , Diabetes Mellitus Tipo 2/terapia , Inibidores Enzimáticos/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Lactente , Intestinos/enzimologia , Lactase/antagonistas & inibidores , Lactobacillus/classificação , Ratos , Ratos Sprague-Dawley , Análise de Sequência de DNA , Sacarase/antagonistas & inibidores , alfa-Glucosidases/metabolismo
11.
Diabetes Metab Res Rev ; 29(2): 103-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23225499

RESUMO

Diabetes mellitus is a looming epidemic worldwide, affecting almost all major sections of society, creating burdens on global health and economy. A large number of studies have identified a series of multiple risk factors such as genetic predisposition, epigenetic changes, unhealthy lifestyle, and altered gut microbiota that cause increased adiposity, ß-cell dysfunction, hyperglycemia, hypercholesterolemia, adiposity, dyslipidaemia, metabolic endotoxemia, systemic inflammation, intestinal permeability (leaky gut), defective secretion of incretins and oxidative stress associated with type 2 diabetes (T2D). Recent studies have proposed multifactorial interventions including dietary manipulation in the management of T2D. The same interventions have also been recommended by many national and international diabetes associations. These studies are aimed at deciphering the gut microbial influence on health and disease. Interestingly, results from several genomic, metagenomic and metabolomic studies have provided substantial information to target gut microbiota by dietary interventions for the management of T2D. Probiotics particularly lactobacilli and bifidobacteria have recently emerged as the prospective biotherapeutics with proven efficacy demonstrated in various in vitro and in vivo animal models adequately supported with their established multifunctional roles and mechanism of action for the prevention and disease treatment. The dietary interventions in conjunction with probiotics - a novel multifactorial strategy to abrogate progression and development of diabetes - hold considerable promise through improving the altered gut microbial composition and by targeting all the possible risk factors. This review will highlight the new developments in probiotic interventions and future prospects for exploring probiotic therapy in the prevention and control of lifestyle diseases like T2D.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Trato Gastrointestinal/microbiologia , Probióticos/uso terapêutico , Animais , Bifidobacterium , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/microbiologia , Humanos , Lactobacillus , Metagenoma
12.
Int J Biol Macromol ; 236: 123962, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907160

RESUMO

Lipoteichoic acid (LTA) is a key surface component of probiotic lactobacilli that is involved in important cellular functions including cross talk with the host immune cells. In this study, the anti-inflammatory and ameliorative properties of LTA from probiotic lactobacilli strains were assessed in in vitro HT-29 cells and in vivo colitis mice. The LTA was extracted with n-butanol and its safety was confirmed based on its endotoxin content and cytotoxicity in HT-29 cells. In the Lipopolysaccharide stimulated HT-29 cells, the LTA from the test probiotics evoked a visible but non-significant increase in IL-10 and decrease in TNF-α levels. During the colitis mice study, probiotic LTA treated mice showed substantial improvement in external colitis symptoms, disease activity score and weight gain. The treated mice also showed improvements in key inflammatory markers such as the gut permeability, myeloperoxidase activity and histopathological damages in colon, although non-significant improvements were recorded for the inflammatory cytokines. Furthermore, structural studies by NMR and FTIR revealed increased level of D-alanine substitution in the LTA of LGG strain over MTCC5690. The present study demonstrates the ameliorative effect of LTA as a postbiotic component from probiotics which can be helpful in building effective strategies for combating gut inflammatory disorders.


Assuntos
Colite , Probióticos , Humanos , Camundongos , Animais , Lactobacillus , Lipopolissacarídeos/química , Células HT29 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação , Citocinas , Probióticos/uso terapêutico
13.
Int J Biol Macromol ; 244: 125146, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37271267

RESUMO

Probiotic surface layer proteins (Slps) have multiple functions and bacterial adhesion to host cells is one of them. The precise role of Slps in cellular adhesion is not well understood due to its low native protein yield and self-aggregative nature. Here, we report the recombinant expression and purification of biologically active Slp of Lactobacillus helveticus NCDC 288 (SlpH) in high yield. SlpH is a highly basic protein (pI = 9.4), having a molecular weight of 45 kDa. Circular Dichroism showed a prevalence of beta-strands in SlpH structure and resistance to low pH. SlpH showed binding to human intestinal tissue, enteric Caco-2 cell line, and porcine gastric mucin, but not with fibronectin, collagen type IV and laminin. SlpH inhibited the binding of the enterotoxigenic E. coli by 70 % and 76 % and that of Salmonella Typhimurium SL1344 by 71 % and 75 % to enteric Caco-2 cell line in the exclusion and competition assays, respectively. The pathogen exclusion and competition activity and tolerance to harsh gastrointestinal conditions show the potential for developing SlpH as a prophylactic or therapeutic agent against enteric pathogens.


Assuntos
Lactobacillus helveticus , Probióticos , Animais , Humanos , Suínos , Proteínas de Membrana , Lactobacillus helveticus/genética , Escherichia coli , Células CACO-2 , Interações entre Hospedeiro e Microrganismos , Aderência Bacteriana , Probióticos/metabolismo
14.
Mol Biol Rep ; 39(3): 2541-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21674190

RESUMO

Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Lactobacillus plantarum/enzimologia , Proteínas de Membrana/metabolismo , Probióticos/metabolismo , Bile , Técnicas de Cultura de Células , Primers do DNA/genética , Concentração de Íons de Hidrogênio , Mucinas , Pancreatina , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie
15.
Mol Biol Rep ; 39(4): 4765-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21947851

RESUMO

Probiotics can affect the immune homeostasis by altering the gut microbial balance and enhancing the immune system of gut, thus benefits in Inflammatory Bowel Disease, including Crohn's disease and Ulcerative colitis. Relative gene expression of pro, anti-inflammatory cytokines and other molecules in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mouse model against Lactobacillus plantarum Lp91 (L. plantarum Lp91) was investigated by reverse transcription-quantitative PCR (RT-qPCR) using relative expression software tool (REST 2008 V2.0.7). L. plantarum Lp91 evoked significant down regulation of TNF-α and COX2 to 0.026 and 0.077 fold in colitis mouse model. No significant difference in expression of IL-12a cytokine in colitis mouse challenged with L. plantarum Lp91 was also observed. IL-10 was significantly up-regulated to 37.813 and 1.327 fold in colitis and non-colitis mouse challenged with L. plantarum Lp91. While, other anti-inflammatory markers i.e. COX1, IL-4 and IL-6 were significantly up regulated in colitis mouse challenged with L. plantarum Lp91. MUC2 gene was significantly up regulated to 2.216 fold in non-colitis group. L. plantarum Lp91, an indigenous probiotic culture, the main subject of this project exhibited strong immunemodulatory properties under in vivo conditions in mouse colitis model.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Colite/microbiologia , Fatores Imunológicos/uso terapêutico , Lactobacillus plantarum/metabolismo , Probióticos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Colite/genética , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Mediadores da Inflamação/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Mucina-2/genética , Mucina-2/metabolismo , Probióticos/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Resultado do Tratamento
16.
Mol Biol Rep ; 39(8): 7887-97, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22547269

RESUMO

Oxidative stress is one of the major causes of degenerative conditions occurring at cellular level with serious health implications. This study was aimed at investigating the antioxidative potentials of probiotic lactobacilli of Indian gut origin and their ability to augment antioxidant defense enzyme systems in the host cells under oxidative stress conditions. A total of 39 Lactobacillus cultures were assessed for their resistance against reactive oxygen species. Most of the cultures were moderately to strongly resistant towards 0.4 mM H(2)O(2). The Lactobacillus isolate CH4 was the most H(2)O(2) resistant culture with only 0.06 log cycle reduction. Majority of the cultures demonstrated high resistance towards hydroxyl ions and Lp21 was the most resistant with log count reduction of 0.20 fold only. Almost all the cultures were also quite resistant to superoxide anions. Lp21 also showed the highest superoxide dismutase content (0.8971 U). Amongst the 39 cultures, Lactobacillus spp. S3 showed the highest total antioxidative activity of 77.85 ± 0.13 % followed by Lp55 (56.1 ± 1.2 %) in terms of per cent inhibition of linolenic acid oxidation. Lp9 up-regulated the expression of superoxide dismutase 2 gene in HT-29 cells both at 0.1 mM (1.997 folds) and 1.0 mM H(2)O(2) (2.058 folds) concentrations. In case of glutathione peroxidase-1, Lp9, Lp91 and Lp55 showed significant (P < 0.001) up-regulation in the gene expression to the level of 5.451, 8.706 and 10.083 folds, respectively when HT-29 was challenged with 0.1 mM H(2)O(2). The expression of catalase gene was also significantly up-regulated by all the cultures at 0.1 mM H(2)O(2) conditions. It can be concluded that the antioxidative efficacy of the putative probiotic lactobacilli varied considerably between species and strains and the potential strains can be explored as prospective antioxidants to manage oxidative stress induced diseases.


Assuntos
Antioxidantes/metabolismo , Trato Gastrointestinal/microbiologia , Lactobacillus/metabolismo , Catalase/genética , Catalase/metabolismo , Ativação Enzimática , Radicais Livres/metabolismo , Trato Gastrointestinal/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células HT29 , Humanos , Índia , Lactobacillus/isolamento & purificação , Probióticos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Glutationa Peroxidase GPX1
17.
J Food Sci Technol ; 49(2): 234-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23572847

RESUMO

The present investigation reports development of post real time PCR (RTi-PCR) - melt curve analysis for simultaneous detection of Listeria monocytogenes and Salmonella spp. The optimal Sybr Green I (SG-I) concentration of 1.6 µM resulted in two specific peaks with melting temperature (Tm) of 79.90 ± 0.39 °C and 86.29 ± 0.13 °C for L. monocytogenes and Salmonella spp respectively. The detection sensitivity of the assay in reconstituted non-fat dried milk (NFDM; 11%) spiked with the target pathogens at different levels was 3 log cfu per ml of each pathogen. However, the sensitivity was improved up to 1 log cfu per ml by including pre-enrichment step of 6 h. On application of assay on 60 market samples, one sample each of raw milk and ice cream was detected positive for L. monocytogenes and Salmonella spp. Assay was quite specific as no cross reactivity with non target cultures could be observed. The developed assay can find valuable application in monitoring dairy products for the presence of L. monocytogenes and Salmonella spp. to ensure their microbiological quality and safety.

18.
Br J Nutr ; 105(4): 561-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20923582

RESUMO

The purpose of the present study was to evaluate the anti-hypercholesterolaemic effects of two putative probiotic bile salt hydrolase (Bsh)-producing Lactobacillus plantarum strains, i.e. Lp91 and Lp21, in rats. L. plantarum Lp91 exhibited excellent tolerance to low pH and high bile salt concentrations as well as showed potential Bsh activity, cholesterol assimilation and cholesterol co-precipitation ability along with L. plantarum Lp21 and NCDO82 strains. Furthermore, the potential effect of L. plantarum Lp91 on plasma cholesterol level was evaluated in Sprague-Dawley rats. Five treatment groups of rats (n 6) were fed experimental diets: normal diet, hypercholesterolaemic diet (HD), HD plus L. plantarum Lp91 (HD91) at ≥ 1·0 × 108 colony-forming units (cfu)/g, HD plus microencapsulated L. plantarum Lp91 (HDCap91) at ≥ 1·0 × 108 cfu/g and HD plus L. plantarum Lp21 (HD21) at ≥ 1·0 × 108 cfu/g for 3 weeks. Feed intake and feed efficiency differed significantly among the five groups. After 21 d of dietary treatment, comparative analysis revealed 23·26, 15·71 and 15·01 % reduction in total cholesterol, 21·09, 18·77 and 18·17 % reduction in TAG, 38·13, 23·22 and 21·42 % reduction in LDL-cholesterol, and the corresponding HDL-cholesterol values increased at the rate of 18·94, 10·30 and 7·78 % in treated groups HD91, HDCap91 and HD21, respectively. Faecal excretion of cholic acid and faecal lactobacilli counts were significantly higher in the probiotic treatment groups than in the control groups. In conclusion, these results suggest that the indigenous L. plantarum Lp91 strain has the potential to be explored as a probiotic in the management of hypercholesterolaemia.


Assuntos
Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares/química , Colesterol/metabolismo , Hidrolases/química , Lactobacillus plantarum/metabolismo , Probióticos/metabolismo , Ração Animal , Animais , Ácido Cólico/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Ratos , Ratos Sprague-Dawley , Células-Tronco
19.
Indian J Med Res ; 134(5): 664-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22199106

RESUMO

BACKGROUND & OBJECTIVES: Adherence of bacteria to epithelial cells and mucosal surfaces is a key criterion for selection of probiotic. We assessed the adhesion property of selected indigenous probiotic Lactobacillus strains based on their hydrophobicity and ability to adhere to human epithelial cells. METHODS: Five human faecal Lactobacillus isolates, one from buffalo milk and one from cheese were assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to Caco2 and HT-29 colonic adenocarcinomal human intestinal epithelial cell lines. Lactobacillus strains that adhered to Caco2 and HT-29 cell lines were quantified by plating after trypsinization and simultaneously the adhered bacteria were also examined microscopically after staining with Geimsa stain and counted in different fields. RESULTS: Among the tested faecal isolates, L. plantarum Lp91 showed maximum percentage hydrophobicity (35.73±0.40 for n-hexadecane and 34.26±0.63 for toluene) closely followed by L. plantarum Lp9 (35.53±0.29 for n-hexadecane and 33.00±0.57 for toluene). Based on direct adhesion to epithelial cells, L. plantarum Lp91 was the most adhesive strain to HT-29 and Caco2 cell lines with per cent adhesion values of 12.8 ± 1.56 and 10.2 ± 1.09, respectively. L. delbrukeii CH4, was the least adhesive with corresponding figures of 2.5 ± 0.37 and 2.6 ± 0.20 per cent on HT-29 and Caco2 cell lines. Adhesion of the six isolated Lactobacillus strain to HT-29 cell and Caco2 lines as recorded under microscope varied between 131.0 ± 13.9 (Lp75) to 342.7 ± 50.52 (Lp91) and 44.7 ± 9.29 (CH4) to 315.7± 35.4 (Lp91), respectively. INTERPRETATION & CONCLUSIONS: Two Indigenous probiotic Lactobacillus strains (Lp9, Lp91) demonstrated their ability to adhere to epithelial cell and exhibited strong hydrophobicity under in vitro conditions, and thus could have better prospects to colonize the gut with extended transit.


Assuntos
Aderência Bacteriana , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/química , Probióticos/química , Células CACO-2 , Colo/citologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Células HT29 , Humanos , Hidrocarbonetos/química , Interações Hidrofóbicas e Hidrofílicas , Intestinos/citologia , Lactobacillus plantarum/isolamento & purificação
20.
Front Microbiol ; 12: 679773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539597

RESUMO

The increase in concern from viable cells of probiotics specifically in acute inflammatory conditions has led to the emergence of the concept of postbiotics as a safer alternative therapy in the field of health and wellness. The aim of the present study was to evaluate the efficacy of surface proteins from three probiotic strains in dextran sodium sulfate and trinitrobenzenesulphonic acid = induced colitis mouse models. The molecular weight of total surface proteins extracted from the three probiotic strains ranged from ∼25 to ∼250 kDa with the presence of negligible levels of endotoxins. Surface layer proteins (SLPs) (∼45 kDa) were found to be present only in the Lactobacillus acidophilus NCFM strain. In the in vivo study, significant differences were not observed in the weight loss and general appetite, however, the decrease in colon length was apparent in TNBS colitis control mice. Further, the administration of these surface proteins significantly reversed the histopathological damages induced by the colitogens and improved the overall histological score. The oral ingestion of these surface proteins also led to a decrease in myeloperoxidase activity and TNF-α expression while the IL-10 levels significantly increased for the strain NCFM followed by MTCC 5690 and MTCC 5689. Overall, the present study signifies the ameliorative role of probiotic surface proteins in colitis mice, thereby, offering a potential and safer alternative for the management of inflammatory bowel disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA