Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Theor Appl Genet ; 136(3): 33, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897507

RESUMO

KEY MESSAGE: Eleven wheat lines that are missing genes for the 1D-encoded omega-5 gliadins will facilitate breeding efforts to reduce the immunogenic potential of wheat flour for patients susceptible to wheat allergy. Efforts to reduce the levels of allergens in wheat flour that cause wheat-dependent exercise-induced anaphylaxis are complicated by the presence of genes encoding omega-5 gliadins on both chromosomes 1B and 1D of hexaploid wheat. In this study, we screened 665 wheat germplasm samples using gene specific DNA markers for omega-5 gliadins encoded by the genes on 1D chromosome that were obtained from the reference wheat Chinese Spring. Eleven wheat lines missing the PCR product corresponding to 1D omega-5 gliadin gene sequences were identified. Two of the lines contained the 1BL·1RS translocation. Relative quantification of gene copy numbers by qPCR revealed that copy numbers of 1D omega-5 gliadins in the other nine lines were comparable to those in 1D null lines of Chinese Spring, while copy numbers of 1B omega-5 gliadins were like those of Chinese Spring. 2-D immunoblot analysis of total flour proteins from the selected lines using a specific monoclonal antibody against the N-terminal sequence of omega-5 gliadin showed no reactivity in regions of the blots containing previously identified 1D omega-5 gliadins. Interestingly, RP-UPLC analysis of the gliadin fractions of the selected lines indicated that the expression of omega-1,2 gliadins was also significantly reduced in seven of the lines, implying that 1D omega-5 gliadin and 1D omega-1,2 gliadin genes are tightly linked on the Gli-D1 loci of chromosome 1D. Wheat lines missing the omega-5 gliadins encoded by the genes on 1D chromosome should be useful in future breeding efforts to reduce the immunogenic potential of wheat flour.


Assuntos
Farinha , Gliadina , Humanos , Gliadina/genética , Gliadina/metabolismo , Melhoramento Vegetal , Triticum/genética , Cromossomos/química , Cromossomos/metabolismo
2.
Nature ; 551(7681): 498-502, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29143815

RESUMO

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


Assuntos
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Diploide , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Genômica/normas , Poaceae/classificação , Recombinação Genética/genética , Análise de Sequência de DNA/normas , Triticum/classificação
3.
Plant J ; 107(1): 303-314, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893684

RESUMO

Until recently, achieving a reference-quality genome sequence for bread wheat was long thought beyond the limits of genome sequencing and assembly technology, primarily due to the large genome size and > 80% repetitive sequence content. The release of the chromosome scale 14.5-Gb IWGSC RefSeq v1.0 genome sequence of bread wheat cv. Chinese Spring (CS) was, therefore, a milestone. Here, we used a direct label and stain (DLS) optical map of the CS genome together with a prior nick, label, repair and stain (NLRS) optical map, and sequence contigs assembled with Pacific Biosciences long reads, to refine the v1.0 assembly. Inconsistencies between the sequence and maps were reconciled and gaps were closed. Gap filling and anchoring of 279 unplaced scaffolds increased the total length of pseudomolecules by 168 Mb (excluding Ns). Positions and orientations were corrected for 233 and 354 scaffolds, respectively, representing 10% of the genome sequence. The accuracy of the remaining 90% of the assembly was validated. As a result of the increased contiguity, the numbers of transposable elements (TEs) and intact TEs have increased in IWGSC RefSeq v2.1 compared with v1.0. In total, 98% of the gene models identified in v1.0 were mapped onto this new assembly through development of a dedicated approach implemented in the MAGAAT pipeline. The numbers of high-confidence genes on pseudomolecules have increased from 105 319 to 105 534. The reconciled assembly enhances the utility of the sequence for genetic mapping, comparative genomics, gene annotation and isolation, and more general studies on the biology of wheat.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Triticum/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/química , Elementos de DNA Transponíveis , Anotação de Sequência Molecular
4.
New Phytol ; 236(6): 2233-2248, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36059081

RESUMO

Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.


Assuntos
Brachypodium , Hordeum , Hordeum/genética , Brachypodium/genética , Proteínas de Repetições Ricas em Leucina , Domínios Proteicos
5.
Theor Appl Genet ; 134(1): 53-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32915283

RESUMO

KEY MESSAGE: New powdery mildew resistance gene Pm68 was found in the terminal region of chromosome 2BS of Greek durum wheat TRI 1796. The co-segregated molecular markers could be used for MAS. Durum wheat (Triticum turgidum L. var. durum Desf.) is not only an important cereal crop for pasta making, but also a genetic resource for common wheat improvement. In the present study, a Greek durum wheat TRI 1796 was found to confer high resistance to all 22 tested isolates of Blumeria graminis f. sp. tritici (Bgt). Inheritance study on the F1 plants and the F2 population derived from the cross TRI 1796/PI 584832 revealed that the resistance in TRI 1796 was controlled by a single dominant gene, herein designated Pm68. Using the bulked segregant RNA-Seq (BSR-Seq) analysis combined with molecular analysis, Pm68 was mapped to the terminal part of the short arm of chromosome 2B and flanked by markers Xdw04 and Xdw12/Xdw13 with genetic distances of 0.22 cM each. According to the reference genome of durum wheat cv. Svevo, the corresponding physical region spanned the Pm68 locus was about 1.78-Mb, in which a number of disease resistance-related genes were annotated. This study reports the new powdery mildew resistance gene Pm68 that would be a valuable resource for improvement of both common wheat and durum wheat. The co-segregated markers (Xdw05-Xdw11) developed here would be useful tools for marker-assisted selection (MAS) in breeding.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Hibridização Genômica Comparativa , Cruzamentos Genéticos , Genes Dominantes , Genes de Plantas , Marcadores Genéticos , Grécia , Doenças das Plantas/microbiologia , RNA-Seq , Triticum/genética , Triticum/microbiologia
6.
Nucleic Acids Res ; 47(W1): W52-W58, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31053848

RESUMO

OrthoVenn is a powerful web platform for the comparison and analysis of whole-genome orthologous clusters. Here we present an updated version, OrthoVenn2, which provides new features that facilitate the comparative analysis of orthologous clusters among up to 12 species. Additionally, this update offers improvements to data visualization and interpretation, including an occurrence pattern table for interrogating the overlap of each orthologous group for the queried species. Within the occurrence table, the functional annotations and summaries of the disjunctions and intersections of clusters between the chosen species can be displayed through an interactive Venn diagram. To facilitate a broader range of comparisons, a larger number of species, including vertebrates, metazoa, protists, fungi, plants and bacteria, have been added in OrthoVenn2. Finally, a stand-alone version is available to perform large dataset comparisons and to visualize results locally without limitation of species number. In summary, OrthoVenn2 is an efficient and user-friendly web server freely accessible at https://orthovenn2.bioinfotoolkits.net.


Assuntos
Biologia Computacional , Genoma/genética , Genômica/métodos , Software , Animais , Bactérias/genética , Bases de Dados Genéticas , Fungos/genética , Humanos , Internet , Anotação de Sequência Molecular , Plantas/genética
7.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299329

RESUMO

The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography-tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the 'Aroona' cultivar and 12 'Aroona' near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for 'Aroona' and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in 'Aroona' and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.


Assuntos
Glutens/análise , Glutens/metabolismo , Triticum/metabolismo , Alelos , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional/métodos , Haplótipos , Peso Molecular , Melhoramento Vegetal/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Triticum/química , Triticum/genética
8.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684754

RESUMO

High-molecular-weight glutenin subunits (HMW-GS) account for only 10% of total wheat storage proteins, but play an important role in the processing quality of wheat flour. Therefore, identifying HMW-GS alleles associated with good end-use quality provides important information for wheat breeders. To rapidly, accurately and reproducibly identify HMW-GS, we established an optimized reversed-phase ultra-performance liquid chromatography (RP-UPLC) method. Separation parameters were optimized using an ACQUITY UPLC Protein BEH C4 column and stepwise ACN gradient, and the separation patterns and retention times (RTs) of 22 subunits were comparatively analyzed in 16 standard wheat cultivars. All HMW-GS proteins were well separated within about 5.5 min, and all analyses were complete within 12 min. We distinguished the 16 subunits based on RT, although three subunits in 1Bx (1Bx7/1Bx7OE and 1Bx17) and three subunits in 1By (1By8*, 1By9 and 1By15) had overlapping RTs; these were differentiated by SDS-PAGE. To distinguish 1Bx7 and 1Bx7OE, which differ in protein abundance, RP-UPLC was combined with PCR analysis of DNA junction markers. The optimized method was successfully applied to determine HMW-GS alleles in a large collection of bread wheat germplasm (1787 lines). This protocol is an appropriate option for selecting lines harboring favorable HMW-GS alleles in wheat breeding.


Assuntos
Cromatografia de Fase Reversa/métodos , Glutens/genética , Triticum/genética , Alelos , Eletroforese em Gel de Poliacrilamida/métodos , Farinha , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Frequência do Gene/genética , Glutens/análise , Peso Molecular , Melhoramento Vegetal , Subunidades Proteicas/química , Transcriptoma/genética , Triticum/química
9.
Funct Integr Genomics ; 20(1): 1-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31250230

RESUMO

Although the economic value of wheat flour is determined by the complement of gluten proteins, these proteins have been challenging to study because of the complexity of the major protein groups and the tremendous sequence diversity among wheat cultivars. The completion of a high-quality wheat genome sequence from the reference wheat Chinese Spring recently facilitated the assembly and annotation of a complete set of gluten protein genes from a single cultivar, making it possible to link individual proteins in the flour to specific gene sequences. In a proteomic analysis of total wheat flour protein from Chinese Spring using quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry, gliadins or low-molecular-weight glutenin subunits were identified as the predominant proteins in 72 protein spots. Individual spots were associated with 40 of 56 Chinese Spring gene sequences, including 16 of 26 alpha gliadins, 10 of 11 gamma gliadins, six of seven omega gliadins, one of two delta gliadins, and nine of ten LMW-GS. Most genes that were not associated with protein spots were either expressed at low levels in endosperm or encoded proteins with high similarity to other proteins. A wide range of protein accumulation levels were observed and discrepancies between transcript levels and protein levels were noted. This work together with similar studies using other commercial cultivars should provide new insight into the molecular basis of wheat flour quality and allergenic potential.


Assuntos
Gliadina/genética , Triticum/genética , Eletroforese em Gel Bidimensional , Farinha , Genoma de Planta , Gliadina/análise , Gliadina/química , Gliadina/metabolismo , Poliploidia , Proteômica , Padrões de Referência , Espectrometria de Massas em Tandem , Triticum/metabolismo
10.
Plant J ; 95(3): 414-426, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752764

RESUMO

Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops.


Assuntos
Genes de Plantas , Loci Gênicos , Gliadina/genética , Valor Nutritivo/genética , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Triticum/genética , Pão , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia
11.
Plant J ; 95(3): 487-503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29770515

RESUMO

Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Genômica , Poaceae/genética , Aegilops/genética , Brachypodium/genética , Mapeamento Cromossômico , Genes de Plantas/genética , Oryza/genética , Análise de Sequência de DNA , Sorghum/genética , Triticum/genética
12.
Funct Integr Genomics ; 19(6): 993-1005, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31197605

RESUMO

α-Gliadins are a major group of gluten proteins in wheat flour that contribute to the end-use properties for food processing and contain major immunogenic epitopes that can cause serious health-related issues including celiac disease (CD). α-Gliadins are also the youngest group of gluten proteins and are encoded by a large gene family. The majority of the gene family members evolved independently in the A, B, and D genomes of different wheat species after their separation from a common ancestral species. To gain insights into the origin and evolution of these complex genes, the genomic regions of the Gli-2 loci encoding α-gliadins were characterized from the tetraploid wild emmer, a progenitor of hexaploid bread wheat that contributed the AABB genomes. Genomic sequences of Gli-2 locus regions for the wild emmer A and B genomes were first reconstructed using the genome sequence scaffolds along with optical genome maps. A total of 24 and 16 α-gliadin genes were identified for the A and B genome regions, respectively. α-Gliadin pseudogene frequencies of 86% for the A genome and 69% for the B genome were primarily caused by C to T substitutions in the highly abundant glutamine codons, resulting in the generation of premature stop codons. Comparison with the homologous regions from the hexaploid wheat cv. Chinese Spring indicated considerable sequence divergence of the two A genomes at the genomic level. In comparison, conserved regions between the two B genomes were identified that included α-gliadin pseudogenes containing shared nested TE insertions. Analyses of the genomic organization and phylogenetic tree reconstruction indicate that although orthologous gene pairs derived from speciation were present, large portions of α-gliadin genes were likely derived from differential gene duplications or deletions after the separation of the homologous wheat genomes ~ 0.5 MYA. The higher number of full-length intact α-gliadin genes in hexaploid wheat than that in wild emmer suggests that human selection through domestication might have an impact on α-gliadin evolution. Our study provides insights into the rapid and dynamic evolution of genomic regions harboring the α-gliadin genes in wheat.


Assuntos
Evolução Molecular , Gliadina/genética , Triticum/genética , Genes de Plantas , Família Multigênica , Pseudogenes
13.
Nucleic Acids Res ; 45(D1): 1015-1020, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27742820

RESUMO

PIECE (Plant Intron Exon Comparison and Evolution) is a web-accessible database that houses intron and exon information of plant genes. PIECE serves as a resource for biologists interested in comparing intron-exon organization and provides valuable insights into the evolution of gene structure in plant genomes. Recently, we updated PIECE to a new version, PIECE 2.0 (http://probes.pw.usda.gov/piece or http://aegilops.wheat.ucdavis.edu/piece). PIECE 2.0 contains annotated genes from 49 sequenced plant species as compared to 25 species in the previous version. In the current version, we also added several new features: (i) a new viewer was developed to show phylogenetic trees displayed along with the structure of individual genes; (ii) genes in the phylogenetic tree can now be also grouped according to KOG (The annotation of Eukaryotic Orthologous Groups) and KO (KEGG Orthology) in addition to Pfam domains; (iii) information on intronless genes are now included in the database; (iv) a statistical summary of global gene structure information for each species and its comparison with other species was added; and (v) an improved GSDraw tool was implemented in the web server to enhance the analysis and display of gene structure. The updated PIECE 2.0 database will be a valuable resource for the plant research community for the study of gene structure and evolution.


Assuntos
Bases de Dados Genéticas , Evolução Molecular , Éxons , Genes de Plantas , Genômica/métodos , Íntrons , Plantas/genética , Biologia Computacional/métodos , Genoma de Planta , Ferramenta de Busca , Interface Usuário-Computador , Navegador
14.
Plant J ; 92(4): 571-583, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857322

RESUMO

Among the wheat prolamins important for its end-use traits, α-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 α-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of α-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated α-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the α-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of α-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.


Assuntos
Genoma de Planta/genética , Gliadina/genética , Família Multigênica/genética , Poaceae/genética , Triticum/genética , Sequência de Aminoácidos , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Genômica , Dados de Sequência Molecular , Filogenia , Prolaminas/genética , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Sintenia
15.
Plant J ; 89(5): 1042-1054, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27775877

RESUMO

Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Vigna/genética , Vigna/fisiologia , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/genética , Clima , Abastecimento de Alimentos , Genoma de Planta/genética , Genótipo
16.
BMC Genomics ; 19(1): 271, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673330

RESUMO

BACKGROUND: Guayule (Parthenium argentatum A. Gray) is a rubber-producing desert shrub native to Mexico and the United States. Guayule represents an alternative to Hevea brasiliensis as a source for commercial natural rubber. The efficient application of modern molecular/genetic tools to guayule improvement requires characterization of its genome. RESULTS: The 1.6 Gb guayule genome was sequenced, assembled and annotated. The final 1.5 Gb assembly, while fragmented (N50 = 22 kb), maps > 95% of the shotgun reads and is essentially complete. Approximately 40,000 transcribed, protein encoding genes were annotated on the assembly. Further characterization of this genome revealed 15 families of small, microsatellite-associated, transposable elements (TEs) with unexpected chromosomal distribution profiles. These SaTar (Satellite Targeted) elements, which are non-autonomous Mu-like elements (MULEs), were frequently observed in multimeric linear arrays of unrelated individual elements within which no individual element is interrupted by another. This uniformly non-nested TE multimer architecture has not been previously described in either eukaryotic or prokaryotic genomes. Five families of similarly distributed non-autonomous MULEs (microsatellite associated, modularly assembled) were characterized in the rice genome. Families of TEs with similar structures and distribution profiles were identified in sorghum and citrus. CONCLUSION: The sequencing and assembly of the guayule genome provides a foundation for application of current crop improvement technologies to this plant. In addition, characterization of this genome revealed SaTar elements with distribution profiles unique among TEs. Satar targeting appears based on an alternative MULE recombination mechanism with the potential to impact gene evolution.


Assuntos
Asteraceae/genética , Elementos de DNA Transponíveis/genética , Genômica/métodos , Repetições de Microssatélites/genética , Oryza/genética , Sequência de Bases , Genoma de Planta/genética , Anotação de Sequência Molecular
17.
BMC Plant Biol ; 18(1): 291, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463509

RESUMO

BACKGROUND: Omega-5 gliadins are a group of highly repetitive gluten proteins in wheat flour encoded on the 1B chromosome of hexaploid wheat. These proteins are the major sensitizing allergens in a severe form of food allergy called wheat-dependent exercise-induced anaphylaxis (WDEIA). The elimination of omega-5 gliadins from wheat flour through biotechnology or breeding approaches could reduce the immunogenic potential and adverse health effects of the flour. RESULTS: A mutant line missing low-molecular weight glutenin subunits encoded at the Glu-B3 locus was selected previously from a doubled haploid population generated from two Korean wheat cultivars. Analysis of flour from the mutant line by 2-dimensional gel electrophoresis coupled with tandem mass spectrometry revealed that the omega-5 gliadins and several gamma gliadins encoded by the closely linked Gli-B1 locus were also missing as a result of a deletion of at least 5.8 Mb of chromosome 1B. Two-dimensional immunoblot analysis of flour proteins using sera from WDEIA patients showed reduced IgE reactivity in the mutant relative to the parental lines due to the absence of the major omega-5 gliadins. However, two minor proteins showed strong reactivity to patient sera in both the parental and the mutant lines and also reacted with a monoclonal antibody against omega-5 gliadin. Analysis of the two minor reactive proteins by mass spectrometry revealed that both proteins correspond to omega-5 gliadin genes encoded on chromosome 1D that were thought previously to be pseudogenes. CONCLUSIONS: While breeding approaches can be used to reduce the levels of the highly immunogenic omega-5 gliadins in wheat flour, these approaches are complicated by the genetic linkage of different classes of gluten protein genes and the finding that omega-5 gliadins may be encoded on more than one chromosome. The work illustrates the importance of detailed knowledge about the genomic regions harboring the major gluten protein genes in individual wheat cultivars for future efforts aimed at reducing the immunogenic potential of wheat flour.


Assuntos
Alérgenos/imunologia , Farinha , Gliadina/imunologia , Triticum/imunologia , Hipersensibilidade a Trigo/imunologia , Alérgenos/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Eletroforese em Gel Bidimensional , Epitopos/genética , Epitopos/imunologia , Genoma de Planta , Gliadina/genética , Humanos , Imunoglobulina E/imunologia , Espectrometria de Massas , Mutação , Melhoramento Vegetal , Poliploidia , Triticum/genética
18.
Theor Appl Genet ; 131(11): 2451-2462, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30141064

RESUMO

KEY MESSAGE: Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.


Assuntos
Inversão Cromossômica , Cromossomos de Plantas/genética , Evolução Molecular , Translocação Genética , Triticum/genética , Mapeamento Cromossômico , DNA Satélite/genética , Genoma de Planta , Poaceae/genética
19.
Plant J ; 87(5): 495-506, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27228577

RESUMO

Prolamin and resistance gene families are important in wheat food use and in defense against pathogen attacks, respectively. To better understand the evolution of these multi-gene families, the DNA sequence of a 2.8-Mb genomic region, representing an 8.8 cM genetic interval and harboring multiple prolamin and resistance-like gene families, was analyzed in the diploid grass Aegilops tauschii, the D-genome donor of bread wheat. Comparison with orthologous regions from rice, Brachypodium, and sorghum showed that the Ae. tauschii region has undergone dramatic changes; it has acquired more than 80 non-syntenic genes and only 13 ancestral genes are shared among these grass species. These non-syntenic genes, including prolamin and resistance-like genes, originated from various genomic regions and likely moved to their present locations via sequence evolution processes involving gene duplication and translocation. Local duplication of non-syntenic genes contributed significantly to the expansion of gene families. Our analysis indicates that the insertion of prolamin-related genes occurred prior to the separation of the Brachypodieae and Triticeae lineages. Unlike in Brachypodium, inserted prolamin genes have rapidly evolved and expanded to encode different classes of major seed storage proteins in Triticeae species. Phylogenetic analyses also showed that the multiple insertions of resistance-like genes and subsequent differential expansion of each R gene family. The high frequency of non-syntenic genes and rapid local gene evolution correlate with the high recombination rate in the 2.8-Mb region with nine-fold higher than the genome-wide average. Our results demonstrate complex evolutionary dynamics in this agronomically important region of Triticeae species.


Assuntos
Cromossomos de Plantas/genética , Prolaminas/metabolismo , Triticum/genética , Evolução Molecular , Duplicação Gênica/genética , Genes de Plantas/genética , Genoma de Planta/genética , Filogenia
20.
Bioinformatics ; 32(22): 3469-3470, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27485442

RESUMO

MOTIVATION: A key component of the analysis of microbiome datasets is the identification of OTUs shared between multiple experimental conditions, commonly referred to as the core microbiome. RESULTS: We present a web platform named MetaCoMET that enables the discovery and visualization of the core microbiome and provides a comparison of the relative abundance and diversity patterns between subsets of samples within a microbiome dataset. MetaCoMET provides an efficient and interactive graphical interface for analyzing each subset defined by the union or disjunction of groups within the Venn diagram, and includes a graphical taxonomy summary, alpha diversity metrics, Principal Coordinate analysis, abundance-based heatmaps, and a chart indicating the geographic distribution of each sample. AVAILABILITY AND IMPLEMENTATION: MetaCoMET is a user-friendly and efficient web platform freely accessible at http://probes.pw.usda.gov/MetaCoMET or http://aegilops.wheat.ucdavis.edu/MetaCoMET CONTACT: devin.coleman-derr@ars.usda.govSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Software , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA