Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(7): 1284-1298.e3, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35779527

RESUMO

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.


Assuntos
COVID-19 , Pneumonia , Progressão da Doença , Humanos , SARS-CoV-2
2.
Nature ; 591(7848): 124-130, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494096

RESUMO

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Interferons/antagonistas & inibidores , Interferons/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Anticorpos Antivirais/sangue , Formação de Anticorpos , Sequência de Bases , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Interferons/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Domínios Proteicos , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de IgG/imunologia , Análise de Célula Única , Carga Viral/imunologia
3.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190719

RESUMO

Rationale: Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.Objectives: We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).Methods: We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main Results: The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Humanos , Estudos Prospectivos , Estado Terminal , Fenótipo , Sepse/genética , Sepse/complicações , Síndrome do Desconforto Respiratório/complicações
4.
Crit Care ; 28(1): 132, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649920

RESUMO

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Assuntos
Biomarcadores , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Biomarcadores/sangue , Biomarcadores/análise , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Adulto , Estudos de Coortes , Hipóxia/sangue
5.
Crit Care ; 28(1): 164, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745253

RESUMO

BACKGROUND: Hypoinflammatory and hyperinflammatory phenotypes have been identified in both Acute Respiratory Distress Syndrome (ARDS) and sepsis. Attributable mortality of ARDS in each phenotype of sepsis is yet to be determined. We aimed to estimate the population attributable fraction of death from ARDS (PAFARDS) in hypoinflammatory and hyperinflammatory sepsis, and to determine the primary cause of death within each phenotype. METHODS: We studied 1737 patients with sepsis from two prospective cohorts. Patients were previously assigned to the hyperinflammatory or hypoinflammatory phenotype using latent class analysis. The PAFARDS in patients with sepsis was estimated separately in the hypo and hyperinflammatory phenotypes. Organ dysfunction, severe comorbidities, and withdrawal of life support were abstracted from the medical record in a subset of patients from the EARLI cohort who died (n = 130/179). Primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: The PAFARDS was 19% (95%CI 10,28%) in hypoinflammatory sepsis and, 14% (95%CI 6,20%) in hyperinflammatory sepsis. Cause of death differed between the two phenotypes (p < 0.001). Respiratory failure was the most common cause of death in hypoinflammatory sepsis, whereas circulatory shock was the most common cause in hyperinflammatory sepsis. Death with severe underlying comorbidities was more frequent in hypoinflammatory sepsis (81% vs. 67%, p = 0.004). CONCLUSIONS: The PAFARDS is modest in both phenotypes whereas primary cause of death among patients with sepsis differed substantially by phenotype. This study identifies challenges in powering future clinical trials to detect changes in mortality outcomes among patients with sepsis and ARDS.


Assuntos
Fenótipo , Síndrome do Desconforto Respiratório , Sepse , Humanos , Sepse/mortalidade , Sepse/complicações , Sepse/fisiopatologia , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Causas de Morte/tendências , Estudos de Coortes , Inflamação
6.
Crit Care ; 27(1): 234, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312169

RESUMO

Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , Angiopoietina-2 , Estado Terminal , Pandemias , Prognóstico
7.
Thorax ; 77(1): 13-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34253679

RESUMO

RATIONALE: Using latent class analysis (LCA), two subphenotypes of acute respiratory distress syndrome (ARDS) have consistently been identified in five randomised controlled trials (RCTs), with distinct biological characteristics, divergent outcomes and differential treatment responses to randomised interventions. Their existence in unselected populations of ARDS remains unknown. We sought to identify subphenotypes in observational cohorts of ARDS using LCA. METHODS: LCA was independently applied to patients with ARDS from two prospective observational cohorts of patients admitted to the intensive care unit, derived from the Validating Acute Lung Injury markers for Diagnosis (VALID) (n=624) and Early Assessment of Renal and Lung Injury (EARLI) (n=335) studies. Clinical and biological data were used as class-defining variables. To test for concordance with prior ARDS subphenotypes, the performance metrics of parsimonious classifier models (interleukin 8, bicarbonate, protein C and vasopressor-use), previously developed in RCTs, were evaluated in EARLI and VALID with LCA-derived subphenotypes as the gold-standard. RESULTS: A 2-class model best fit the population in VALID (p=0.0010) and in EARLI (p<0.0001). Class 2 comprised 27% and 37% of the populations in VALID and EARLI, respectively. Consistent with the previously described 'hyperinflammatory' subphenotype, Class 2 was characterised by higher proinflammatory biomarkers, acidosis and increased shock and worse clinical outcomes. The similarities between these and prior RCT-derived subphenotypes were further substantiated by the performance of the parsimonious classifier models in both cohorts (area under the curves 0.92-0.94). The hyperinflammatory subphenotype was associated with increased prevalence of chronic liver disease and neutropenia and reduced incidence of chronic obstructive pulmonary disease. Measurement of novel biomarkers showed significantly higher levels of matrix metalloproteinase-8 and markers of endothelial injury in the hyperinflammatory subphenotype, whereas, matrix metalloproteinase-9 was significantly lower. CONCLUSION: Previously described subphenotypes are generalisable to unselected populations of non-trauma ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Biomarcadores , Humanos , Análise de Classes Latentes , Estudos Prospectivos , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/etiologia
8.
Crit Care ; 26(1): 278, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104754

RESUMO

BACKGROUND: Studies quantifying SARS-CoV-2 have focused on upper respiratory tract or plasma viral RNA with inconsistent association with clinical outcomes. The association between plasma viral antigen levels and clinical outcomes has not been previously studied. Our aim was to investigate the relationship between plasma SARS-CoV-2 nucleocapsid antigen (N-antigen) concentration and both markers of host response and clinical outcomes. METHODS: SARS-CoV-2 N-antigen concentrations were measured in the first study plasma sample (D0), collected within 72 h of hospital admission, from 256 subjects admitted between March 2020 and August 2021 in a prospective observational cohort of hospitalized patients with COVID-19. The rank correlations between plasma N-antigen and plasma biomarkers of tissue damage, coagulation, and inflammation were assessed. Multiple ordinal regression was used to test the association between enrollment N-antigen plasma concentration and the primary outcome of clinical deterioration at one week as measured by a modified World Health Organization (WHO) ordinal scale. Multiple logistic regression was used to test the association between enrollment plasma N-antigen concentration and the secondary outcomes of ICU admission, mechanical ventilation at 28 days, and death at 28 days. The prognostic discrimination of an externally derived "high antigen" cutoff of N-antigen ≥ 1000 pg/mL was also tested. RESULTS: N-antigen on D0 was detectable in 84% of study participants. Plasma N-antigen levels significantly correlated with RAGE (r = 0.61), IL-10 (r = 0.59), and IP-10 (r = 0.59, adjusted p = 0.01 for all correlations). For the primary outcome of clinical status at one week, each 500 pg/mL increase in plasma N-antigen level was associated with an adjusted OR of 1.05 (95% CI 1.03-1.08) for worse WHO ordinal status. D0 plasma N-antigen ≥ 1000 pg/mL was 77% sensitive and 59% specific (AUROC 0.68) with a positive predictive value of 23% and a negative predictive value of 93% for a worse WHO ordinal scale at day 7 compared to baseline. D0 N-antigen concentration was independently associated with ICU admission and 28-day mechanical ventilation, but not with death at 28 days. CONCLUSIONS: Plasma N-antigen levels are readily measured and provide important insight into the pathogenesis and prognosis of COVID-19. The measurement of N-antigen levels early in-hospital course may improve risk stratification, especially for identifying patients who are unlikely to progress to severe disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nucleocapsídeo , RNA Viral
10.
Crit Care ; 24(1): 416, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653023

RESUMO

BACKGROUND: Cystatin C is a well-validated marker of glomerular filtration rate in chronic kidney disease. Higher plasma concentrations of cystatin C are associated with worse clinical outcomes in heterogenous populations of critically ill patients and may be superior to creatinine in identifying kidney injury in critically ill patients. We hypothesized that elevated levels of plasma cystatin C in patients with acute respiratory distress syndrome (ARDS) would be associated with mortality risk. METHODS: In a retrospective study, cystatin C was measured by nephelometry on plasma obtained at enrollment from 919 patients in the Fluid and Catheter Treatment Trial. Multivariable logistic regression was performed testing the association between quartiles of cystatin C and 60-day mortality. Analyses were stratified by acute kidney injury (AKI) status identified in the first 7 days after enrollment by Kidney Disease: Improving Global Outcomes (KDIGO) criteria. RESULTS: Cystatin C was significantly higher among those patients who died compared to those who survived to 60 days [1.2 (0.9-1.9) mg/L vs. 0.8 (0.6-1.2) mg/L, p < 0.001]. Compared to the lower three quartiles, subjects in the highest quartile of cystatin C had a significantly higher odds of death at 60 days [OR 1.8 (1.2-2.6), p = 0.003 in adjusted analyses]; the odds of death incrementally rose in higher cystatin C quartiles compared to the lowest quartile (OR 1.1, 1.8, and 2.5). In adjusted analyses stratified by AKI status, compared to subjects in the lower three quartiles, subjects in the highest quartile of cystatin C with AKI had a significantly higher odds of death at 60 days both in participants with AKI [OR 1.6 (1.0-2.4), p = 0.048] and those without AKI [OR 2.4 (1.2-5.0), p = 0.017]. In adjusted analyses, there was no significant association between sex-stratified baseline creatinine quartiles and mortality. CONCLUSIONS: Higher plasma levels of cystatin C on enrollment were strongly associated with mortality at 60 days in patients with ARDS with and without AKI identified by creatinine-based definitions. Compared to creatinine, cystatin C may be a better biomarker of kidney function in patients with ARDS and therefore identify patients with multiple organ failure at higher risk of death.


Assuntos
Cistatina C/efeitos adversos , Cistatina C/análise , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/mortalidade , APACHE , Adulto , Idoso , Biomarcadores/análise , Biomarcadores/sangue , Estudos de Coortes , Correlação de Dados , Cistatina C/sangue , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Plasma/química , Estudos Prospectivos , Estudos Retrospectivos
11.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L579-L585, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213470

RESUMO

The protein concentration of alveolar edema fluid in acute respiratory distress syndrome (ARDS) is dynamic. It reflects alveolar flooding during acute injury, as well as fluid and protein clearance over time. We hypothesized that among ARDS patients treated with low tidal volume ventilation, higher concentrations of protein in mini-bronchoalveolar lavage (mBAL) samples would predict slower resolution of lung injury and worse clinical outcomes. Total protein and IgM concentrations in day 0 mBAL samples from 79 subjects enrolled in the aerosolized albuterol (ALTA) ARDS Network Albuterol Trial were measured by colorimetric assay and ELISA, respectively. Linear regression models were used to test the association of mBAL proteins with clinical outcomes and measures of length of illness, including ventilator-free days (VFDs). Median mBAL total protein concentration was 1,740 µg/ml [interquartile range (IQR): 890-3,170]. Each 500 µg/ml increase in day 0 mBAL total protein was associated with an additional 0.8 VFDs [95% confidence interval (CI): 0.05-1.6, P value = 0.038]. Median mBAL IgM concentration was 410 ng/ml (IQR: 340-500). Each 50 ng/ml increase in mBAL IgM was associated with an additional 1.1 VFDs (95% CI 0.2-2.1, P value = 0.022). These associations remained significant and were not attenuated in multivariate models adjusted for age, serum protein concentration, and vasopressor use in the 24 h before enrollment. Thus, higher mBAL total protein and IgM concentrations at day 0 are associated with more VFDs in patients with ARDS and may identify patients with preserved alveolar epithelial mechanisms for net alveolar fluid clearance.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Lesão Pulmonar/complicações , Lesão Pulmonar/metabolismo , Proteínas/metabolismo , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/metabolismo , Ventiladores Mecânicos , Biomarcadores/sangue , Feminino , Humanos , Imunoglobulina M/metabolismo , Modelos Lineares , Lesão Pulmonar/sangue , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/sangue , Resultado do Tratamento
13.
Psychosom Med ; 75(9): 849-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24149074

RESUMO

OBJECTIVE: Little is known about the effect of cumulative psychological trauma on health outcomes in patients with cardiovascular disease. The objective of this study was to prospectively examine the association between lifetime trauma exposure and recurrent cardiovascular events or all-cause mortality in patients with existing cardiovascular disease. METHODS: A total of 1021 men and women with cardiovascular disease were recruited in 2000 to 2002 and followed annually. Trauma history and psychiatric comorbidities were assessed at baseline using the Computerized Diagnostic Interview Schedule for DSM-IV. Health behaviors were assessed using standardized questionnaires. Outcome data were collected annually, and all medical records were reviewed by two independent, blinded physician adjudicators. We used Cox proportional hazards models to evaluate the association between lifetime trauma exposure and the composite outcome of cardiovascular events and all-cause mortality. RESULTS: During an average of 7.5 years of follow-up, there were 503 cardiovascular events and deaths. Compared with the 251 participants in the lowest trauma exposure quartile, the 256 participants in the highest exposure quartile had a 38% greater risk of adverse outcomes (hazard ratio = 1.38, 95% confidence interval = 1.06-1.81), adjusted for age, sex, race, income, education, depression, posttraumatic stress disorder, generalized anxiety disorder, smoking, physical inactivity, and illicit drug abuse. CONCLUSIONS: Cumulative exposure to psychological trauma was associated with an increased risk of recurrent cardiovascular events and mortality, independent of psychiatric comorbidities and health behaviors. These data add to a growing literature showing enduring effects of repeated trauma exposure on health that are independent of trauma-related psychiatric disorders such as depression and posttraumatic stress disorder.


Assuntos
Doenças Cardiovasculares/mortalidade , Nível de Saúde , Acontecimentos que Mudam a Vida , Transtornos Mentais/epidemiologia , Estresse Psicológico/mortalidade , Adulto , Idoso , Causas de Morte , Comorbidade , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Entrevista Psicológica , Masculino , Modelos de Riscos Proporcionais , Estudos Prospectivos , Recidiva , Estados Unidos/epidemiologia
14.
Semin Respir Crit Care Med ; 34(4): 475-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23934716

RESUMO

Acute viral pneumonia is an important cause of acute lung injury (ALI), although not enough is known about the exact incidence of viral infection in ALI. Polymerase chain reaction-based assays, direct fluorescent antigen (DFA) assays, and viral cultures can detect viruses in samples from the human respiratory tract, but the presence of the virus does not prove it to be a pathogen, nor does it give information regarding the interaction of viruses with the host immune response and bacterial flora of the respiratory tract. The severe acute respiratory syndrome (SARS) epidemic and the 2009 H1N1 influenza pandemic provided a better understanding of how viral pathogens mediate lung injury. Although the viruses initially infect the respiratory epithelium, the relative role of epithelial damage and endothelial dysfunction has not been well defined. The inflammatory host immune response to H1N1 infection is a major contributor to lung injury. The SARS coronavirus causes lung injury and inflammation in part through actions on the nonclassical renin angiotensin pathway. The lessons learned from the pandemic outbreaks of SARS coronavirus and H1N1 capture key principles of virally mediated ALI. There are pathogen-specific pathways underlying virally mediated ALI that converge onto a common end pathway resulting in diffuse alveolar damage. In terms of therapy, lung protective ventilation is the cornerstone of supportive care. There is little evidence that corticosteroids are beneficial, and they might be harmful. Future therapeutic strategies may be targeted to specific pathogens, the pathogenetic pathways in the host immune response, or enhancing repair and regeneration of tissue damage.


Assuntos
Lesão Pulmonar Aguda/virologia , Influenza Humana/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/epidemiologia , Animais , Surtos de Doenças , Técnica Direta de Fluorescência para Anticorpo , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Pneumonia Viral/complicações , Reação em Cadeia da Polimerase/métodos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação
15.
Respir Care ; 68(10): 1340-1346, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37280079

RESUMO

BACKGROUND: Pneumonia from COVID-19 that results in ARDS may require invasive mechanical ventilation. This retrospective study assessed the characteristics and outcomes of subjects with COVID-19-associated ARDS versus ARDS (non-COVID) during the first 6 months of the COVID-19 pandemic in 2020. The primary objective was to determine whether mechanical ventilation duration differed between these cohorts and identify other potential contributory factors. METHODS: We retrospectively identified 73 subjects admitted between March 1 and August 12, 2020, with either COVID-19-associated ARDS (37) or ARDS (36) who were managed with the lung protective ventilator protocol and required >48 h of mechanical ventilation. Exclusion criteria were the following: <18 years old or the patient required tracheostomy or interfacility transfer. Demographic and baseline clinical data were collected at ARDS onset (ARDS day 0), with subsequent data collected on ARDS days 1-3, 5, 7, 10, 14, and 21. Comparisons were made by using the Wilcoxon rank-sum test (continuous variables) and chi-square test (categorical variables) stratified by COVID-19 status. A Cox proportional hazards model assessed the cause-specific hazard ratio for extubation. RESULTS: The median (interquartile range) mechanical ventilation duration among the subjects who survived to extubation was longer in those with COVID-19-ARDS versus the subjects with non-COVID ARDS: 10 (6-20) d versus 4 (2-8) d; P < .001. Hospital mortality was not different between the two groups (22% vs 39%; P = .11). The competing risks Cox proportional hazard analysis (fit among the total sample, including non-survivors) revealed that improved compliance of the respiratory system and oxygenation were associated with the probability of extubation. Oxygenation improved at a lower rate in the subjects with COVID-19-associated ARDS than in the subjects with non-COVID ARDS. CONCLUSIONS: Mechanical ventilation duration was longer in subjects with COVID-19-associated ARDS compared with the subjects with non-COVID ARDS, which may be explained by a lower rate of improvement in oxygenation status.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Adolescente , COVID-19/complicações , Estudos Retrospectivos , Extubação , Pandemias , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia
16.
Front Immunol ; 14: 1130821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026003

RESUMO

Introduction: There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods: Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results: Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion: Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Receptor para Produtos Finais de Glicação Avançada , Nucleocapsídeo , Antígenos , Biomarcadores , Antígenos Virais
17.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577607

RESUMO

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. We performed bulk and single-cell RNA sequencing of the lower respiratory tract and blood, and plasma cytokine profiling to study the effect of dexamethasone on systemic and pulmonary immune cells. We find decreased signatures of antigen presentation, T cell recruitment, and viral injury in patients treated with dexamethasone. We identify compartment- and cell- specific differences in the effect of dexamethasone in patients with severe COVID-19 that are reproducible in publicly available datasets. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.

18.
Front Immunol ; 14: 1130288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999030

RESUMO

Introduction: Thromboinflammatory complications are well described sequalae of Coronavirus Disease 2019 (COVID-19), and there is evidence of both hyperreactive platelet and inflammatory neutrophil biology that contributes to the thromoinflammatory milieu. It has been demonstrated in other thromboinflammatory diseases that the circulating environment may affect cellular behavior, but what role this environment exerts on platelets and neutrophils in COVID-19 remains unknown. We tested the hypotheses that 1) plasma from COVID-19 patients can induce a prothrombotic platelet functional phenotype, and 2) contents released from platelets (platelet releasate) from COVID-19 patients can induce a proinflammatory neutrophil phenotype. Methods: We treated platelets with COVID-19 patient and disease control plasma, and measured their aggregation response to collagen and adhesion in a microfluidic parallel plate flow chamber coated with collagen and thromboplastin. We exposed healthy neutrophils to platelet releasate from COVID-19 patients and disease controls and measured neutrophil extracellular trap formation and performed RNA sequencing. Results: We found that COVID-19 patient plasma promoted auto-aggregation, thereby reducing response to further stimulation ex-vivo. Neither disease condition increased the number of platelets adhered to a collagen and thromboplastin coated parallel plate flow chamber, but both markedly reduced platelet size. COVID-19 patient platelet releasate increased myeloperoxidasedeoxyribonucleic acid complexes and induced changes to neutrophil gene expression. Discussion: Together these results suggest aspects of the soluble environment circulating platelets, and that the contents released from those neutrophil behavior independent of direct cellular contact.


Assuntos
Plaquetas , COVID-19 , Humanos , Plaquetas/metabolismo , Neutrófilos/metabolismo , COVID-19/metabolismo , Tromboplastina/metabolismo , Colágeno/metabolismo
19.
Lancet Respir Med ; 11(11): 965-974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633303

RESUMO

BACKGROUND: In sepsis and acute respiratory distress syndrome (ARDS), heterogeneity has contributed to difficulty identifying effective pharmacotherapies. In ARDS, two molecular phenotypes (hypoinflammatory and hyperinflammatory) have consistently been identified, with divergent outcomes and treatment responses. In this study, we sought to derive molecular phenotypes in critically ill adults with sepsis, determine their overlap with previous ARDS phenotypes, and evaluate whether they respond differently to treatment in completed sepsis trials. METHODS: We used clinical data and plasma biomarkers from two prospective sepsis cohorts, the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study (N=1140) and the Early Assessment of Renal and Lung Injury (EARLI) study (N=818), in latent class analysis (LCA) to identify the optimal number of classes in each cohort independently. We used validated models trained to classify ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied these models retrospectively to the previously published Prospective Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock (PROWESS-SHOCK) trial and Vasopressin and Septic Shock Trial (VASST) to assign phenotypes and evaluate heterogeneity of treatment effect. FINDINGS: A two-class model best fit both VALID and EARLI (p<0·0001). In VALID, 804 (70·5%) of the 1140 patients were classified as hypoinflammatory and 336 (29·5%) as hyperinflammatory; in EARLI, 530 (64·8%) of 818 were hypoinflammatory and 288 (35·2%) hyperinflammatory. We observed higher plasma pro-inflammatory cytokines, more vasopressor use, more bacteraemia, lower protein C, and higher mortality in the hyperinflammatory than in the hypoinflammatory phenotype (p<0·0001 for all). Classifier models indicated strong concordance between sepsis phenotypes and previously identified ARDS phenotypes (area under the curve 0·87-0·96, depending on the model). Findings were similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142 (68·0%) of 1680 patients had the hypoinflammatory phenotype and 538 (32·0%) had the hyperinflammatory phenotype, and response to activated protein C differed by phenotype (p=0·0043). In VASST, phenotype proportions were similar to other cohorts; however, no treatment interaction with the type of vasopressor was observed (p=0·72). INTERPRETATION: Molecular phenotypes previously identified in ARDS are also identifiable in multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes could represent a treatable trait in critical illness beyond the patient's syndromic diagnosis. FUNDING: US National Institutes of Health.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Choque Séptico , Adulto , Humanos , Choque Séptico/diagnóstico , Choque Séptico/tratamento farmacológico , Proteína C/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , Sepse/diagnóstico , Sepse/tratamento farmacológico , Sepse/complicações , Fenótipo , Biomarcadores , Vasoconstritores/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
iScience ; 26(10): 107813, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810211

RESUMO

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA