Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 148(15): 3641-3649, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37417475

RESUMO

The routine use of SERS as an analytical technique has been hindered by practical considerations among which the irreproducibility of its signals and the lack of robustness of its calibration. In the present work, we examine a strategy to perform quantitative SERS without the need for calibration. The method reinvests a colorimetric volumetric titration procedure to determine water hardness but involves monitoring the progression of the titration through the SERS signal of a complexometric indicator. Upon reaching the equivalence between the chelating titrant and the metal analytes, the SERS signal abruptly jumps, which conveniently serves as an end-point marker. Three mineral waters spanning divalent metal concentrations varying by a factor of 25 were successfully titrated in this way, with satisfactory accuracy. Remarkably, the developed procedure can be run in less than an hour, without laboratory-grade carrying capacity and would be relevant for field measurements.

2.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287299

RESUMO

The control of microbes and microbial consortia to achieve specific functions requires synthetic circuits that can reliably cope with internal and external perturbations. Circuits that naturally evolved to regulate biological functions are frequently robust to alterations in their parameters. As the complexity of synthetic circuits increases, synthetic biologists need to implement such robust control "by design". This is especially true for intercellular signaling circuits for synthetic consortia, where robustness is highly desirable, but its mechanisms remain unclear. Cybergenetics, the interface between synthetic biology and control theory, offers two approaches to this challenge: external (computer-aided) and internal (autonomous) control. Here, we review natural and synthetic microbial systems with robustness, and outline experimental approaches to implement such robust control in microbial consortia through population-level cybergenetics. We propose that harnessing natural intercellular circuit topologies with robust evolved functions can help to achieve similar robust control in synthetic intercellular circuits. A "hybrid biology" approach, where robust synthetic microbes interact with natural consortia and-additionally-with external computers, could become a useful tool for health and environmental applications.


Assuntos
Microbiologia , Biologia Sintética , Animais , Ecossistema , Meio Ambiente , Humanos , Consórcios Microbianos , Técnicas Microbiológicas , Biologia Sintética/métodos
3.
PLoS Comput Biol ; 12(2): e1004706, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26859137

RESUMO

Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation). Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.


Assuntos
Expressão Gênica/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Análise de Célula Única , Biologia Computacional , Expressão Gênica/genética , Técnicas Analíticas Microfluídicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(14): 5725-30, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23493557

RESUMO

Regulation of the cellular volume is fundamental for cell survival and function. Deviations from equilibrium trigger dedicated signaling and transcriptional responses that mediate water homeostasis and volume recovery. Cells are densely packed with proteins, and molecular crowding may play an important role in cellular processes. Indeed, increasing molecular crowding has been shown to modify the kinetics of biochemical reactions in vitro; however, the effects of molecular crowding in living cells are mostly unexplored. Here, we report that, in yeast, a sudden reduction in cellular volume, induced by severe osmotic stress, slows down the dynamics of several signaling cascades, including the stress-response pathways required for osmotic adaptation. We show that increasing osmotic compression decreases protein mobility and can eventually lead to a dramatic stalling of several unrelated signaling and cellular processes. The rate of these cellular processes decreased exponentially with protein density when approaching stalling osmotic compression. This suggests that, under compression, the cytoplasm behaves as a soft colloid undergoing a glass transition. Our results shed light on the physical mechanisms that force cells to cope with volume fluctuations to maintain an optimal protein density compatible with cellular functions.


Assuntos
Adaptação Fisiológica/fisiologia , Citoplasma/química , Proteínas Fúngicas/análise , Pressão Osmótica/fisiologia , Transdução de Sinais/fisiologia , Leveduras/citologia , Biofísica , Western Blotting , Eletroforese em Gel de Poliacrilamida , Recuperação de Fluorescência Após Fotodegradação , Homeostase/fisiologia , Cinética , Modelos Biológicos , Água/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(35): 14271-6, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22893687

RESUMO

Gene expression plays a central role in the orchestration of cellular processes. The use of inducible promoters to change the expression level of a gene from its physiological level has significantly contributed to the understanding of the functioning of regulatory networks. However, from a quantitative point of view, their use is limited to short-term, population-scale studies to average out cell-to-cell variability and gene expression noise and limit the nonpredictable effects of internal feedback loops that may antagonize the inducer action. Here, we show that, by implementing an external feedback loop, one can tightly control the expression of a gene over many cell generations with quantitative accuracy. To reach this goal, we developed a platform for real-time, closed-loop control of gene expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics to manipulate the cells' environment, and original software for automated imaging, quantification, and model predictive control. By using an endogenous osmostress responsive promoter and playing with the osmolarity of the cells environment, we show that long-term control can, indeed, be achieved for both time-constant and time-varying target profiles at the population and even the single-cell levels. Importantly, we provide evidence that real-time control can dynamically limit the effects of gene expression stochasticity. We anticipate that our method will be useful to quantitatively probe the dynamic properties of cellular processes and drive complex, synthetically engineered networks.


Assuntos
Cibernética/métodos , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/genética , Biologia de Sistemas/métodos , Retroalimentação Fisiológica/fisiologia , Glicerol/metabolismo , Microfluídica , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Concentração Osmolar , Pressão Osmótica/fisiologia , Valor Preditivo dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Design de Software , Processos Estocásticos
6.
Proc Natl Acad Sci U S A ; 109(27): 10891-6, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711834

RESUMO

Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 µm was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Pseudópodes/fisiologia , Cicatrização/fisiologia , Actomiosina/fisiologia , Animais , Contagem de Células , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Cães , Junções Intercelulares/fisiologia , Rim/citologia , Quinase de Cadeia Leve de Miosina/fisiologia , Estresse Mecânico , Quinases Associadas a rho/fisiologia
7.
Proc Natl Acad Sci U S A ; 109(32): 12974-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22814373

RESUMO

The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell-cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell-cell junctions abolishes directed collective migration and passive cell-cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell-cell junctions can feed back to regulate the organization of migrating tissues.


Assuntos
Comunicação Celular/fisiologia , Engenharia Celular/métodos , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Linhagem Celular , Cães , Fibronectinas , Reologia
8.
Proc Natl Acad Sci U S A ; 109(18): 6933-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509005

RESUMO

Cell migration plays a major role in many fundamental biological processes, such as morphogenesis, tumor metastasis, and wound healing. As they anchor and pull on their surroundings, adhering cells actively probe the stiffness of their environment. Current understanding is that traction forces exerted by cells arise mainly at mechanotransduction sites, called focal adhesions, whose size seems to be correlated to the force exerted by cells on their underlying substrate, at least during their initial stages. In fact, our data show by direct measurements that the buildup of traction forces is faster for larger substrate stiffness, and that the stress measured at adhesion sites depends on substrate rigidity. Our results, backed by a phenomenological model based on active gel theory, suggest that rigidity-sensing is mediated by a large-scale mechanism originating in the cytoskeleton instead of a local one. We show that large-scale mechanosensing leads to an adaptative response of cell migration to stiffness gradients. In response to a step boundary in rigidity, we observe not only that cells migrate preferentially toward stiffer substrates, but also that this response is optimal in a narrow range of rigidities. Taken together, these findings lead to unique insights into the regulation of cell response to external mechanical cues and provide evidence for a cytoskeleton-based rigidity-sensing mechanism.


Assuntos
Movimento Celular/fisiologia , Mecanotransdução Celular/fisiologia , Actinas/fisiologia , Adaptação Fisiológica , Animais , Fenômenos Biofísicos , Adesão Celular/fisiologia , Linhagem Celular , Citoesqueleto/fisiologia , Elasticidade , Adesões Focais/fisiologia , Microscopia Eletrônica de Varredura , Modelos Biológicos , Ratos , Estresse Mecânico , Propriedades de Superfície
9.
Biophys J ; 106(10): 2214-21, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24853750

RESUMO

Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes.


Assuntos
Técnicas de Cultura/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transporte Biológico , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucose/metabolismo , Glucose/farmacologia , Membranas Artificiais , Microtecnologia , Porosidade , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
10.
Nat Commun ; 15(1): 75, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168087

RESUMO

Microbial communities are shaped by complex metabolic interactions such as cooperation and competition for resources. Methods to control such interactions could lead to major advances in our ability to better engineer microbial consortia for synthetic biology applications. Here, we use optogenetics to control SUC2 invertase production in yeast, thereby shaping spatial assortment of cooperator and cheater cells. Yeast cells behave as cooperators (i.e., transform sucrose into hexose, a public good) upon blue light illumination or cheaters (i.e., consume hexose produced by cooperators to grow) in the dark. We show that cooperators benefit best from the hexoses they produce when their domain size is constrained between two cut-off length-scales. From an engineering point of view, the system behaves as a bandpass filter. The lower limit is the trace of cheaters' competition for hexoses, while the upper limit is defined by cooperators' competition for sucrose. Cooperation mostly occurs at the frontiers with cheater cells, which not only compete for hexoses but also cooperate passively by letting sucrose reach cooperators. We anticipate that this optogenetic method could be applied to shape metabolic interactions in a variety of microbial ecosystems.


Assuntos
Optogenética , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ecossistema , Modelos Biológicos , Hexoses , Sacarose
11.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568203

RESUMO

Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.


Assuntos
Osmorregulação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Pressão Osmótica , Proliferação de Células , Glucose
12.
Front Bioeng Biotechnol ; 11: 1085268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814715

RESUMO

Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.

13.
Biophys J ; 102(12): 2791-8, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22735529

RESUMO

The model organism Caenorhabditis elegans shows two distinct locomotion patterns in laboratory situations: it swims in low viscosity liquids and it crawls on the surface of an agar gel. This provides a unique opportunity to discern the respective roles of mechanosensation (perception and proprioception) and mechanics in the regulation of locomotion and in the gait selection. Using an original device, we present what to our knowledge are new experiments where the confinement of a worm between a glass plate and a soft agar gel is controlled while recording the worm's motion. We observed that the worm continuously varied its locomotion characteristics from free swimming to slow crawling with increasing confinement so that it was not possible to discriminate between two distinct intrinsic gaits. This unicity of the gait is also proved by the fact that wild-type worms immediately adapted their motion when the imposed confinement was changed with time. We then studied locomotory deficient mutants that also exhibited one single gait and showed that the light touch response was needed for the undulation propagation and that the ciliated sensory neurons participated in the joint selection of motion period and undulation-wave velocity. Our results reveal that the control of maximum curvature, at a sensory or mechanical level, is a key ingredient of the locomotion regulation.


Assuntos
Caenorhabditis elegans/fisiologia , Locomoção , Fenômenos Mecânicos , Animais , Caenorhabditis elegans/genética , Módulo de Elasticidade , Mutação , Tensão Superficial , Viscosidade
15.
Sci Rep ; 12(1): 11579, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803978

RESUMO

Timelapse fluorescence microscopy imaging is routinely used in quantitative cell biology. However, microscopes could become much more powerful investigation systems if they were endowed with simple unsupervised decision-making algorithms to transform them into fully responsive and automated measurement devices. Here, we report CyberSco.Py, Python software for advanced automated timelapse experiments. We provide proof-of-principle of a user-friendly framework that increases the tunability and flexibility when setting up and running fluorescence timelapse microscopy experiments. Importantly, CyberSco.Py combines real-time image analysis with automation capability, which allows users to create conditional, event-based experiments in which the imaging acquisition parameters and the status of various devices can be changed automatically based on the image analysis. We exemplify the relevance of CyberSco.Py to cell biology using several use case experiments with budding yeast. We anticipate that CyberSco.Py could be used to address the growing need for smart microscopy systems to implement more informative quantitative cell biology experiments.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Algoritmos , Automação , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência
16.
Proc Natl Acad Sci U S A ; 105(20): 7165-70, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18480263

RESUMO

Signaling pathways relay information about changes in the external environment so that cells can respond appropriately. How much information a pathway can carry depends on its bandwidth. We designed a microfluidic device to reliably change the environment of single cells over a range of frequencies. Using this device, we measured the bandwidth of the Saccharomyces cerevisiae signaling pathway that responds to high osmolarity. This prototypical pathway, the HOG pathway, is shown to act as a low-pass filter, integrating the signal when it changes rapidly and following it faithfully when it changes more slowly. We study the dependence of the pathway's bandwidth on its architecture. We measure previously unknown bounds on all of the in vivo reaction rates acting in this pathway. We find that the two-component Ssk1 branch of this pathway is capable of fast signal integration, whereas the kinase Ste11 branch is not. Our experimental techniques can be applied to other signaling pathways, allowing the measurement of their in vivo kinetics and the quantification of their information capacity.


Assuntos
Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Processamento de Imagem Assistida por Computador , Inflamação , MAP Quinase Quinase Quinases/metabolismo , Técnicas Analíticas Microfluídicas , Microfluídica , Modelos Biológicos , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais
17.
Biophys J ; 98(4): 534-42, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20159149

RESUMO

Traction forces between adhesive cells play an important role in a number of collective cell processes. Intercellular contacts, in particular cadherin-based intercellular junctions, are the major means of transmitting force within tissues. We investigated the effect of cellular tension on the formation of cadherin-cadherin contacts by spreading cells on substrates with tunable stiffness coated with N-cadherin homophilic ligands. On the most rigid substrates, cells appear well-spread and present cadherin adhesions and cytoskeletal organization similar to those classically observed on cadherin-coated glass substrates. However, when cells are cultured on softer substrates, a change in morphology is observed: the cells are less spread, with a more disorganized actin network. A quantitative analysis of the cells adhering on the cadherin-coated surfaces shows that forces are correlated with the formation of cadherin adhesions. The stiffer the substrates, the larger are the average traction forces and the more developed are the cadherin adhesions. When cells are treated with blebbistatin to inhibit myosin II, the forces decrease and the cadherin adhesions disappear. Together, these findings are consistent with a mechanosensitive regulation of cadherin-mediated intercellular junctions through the cellular contractile machinery.


Assuntos
Caderinas/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular , Forma Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Humanos , Junções Intercelulares/metabolismo , Espaço Intracelular/metabolismo , Camundongos , Miosina Tipo II/metabolismo , Propriedades de Superfície
18.
Proc Natl Acad Sci U S A ; 104(50): 19926-30, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18056799

RESUMO

Competition between random genetic drift and natural selection play a central role in evolution: Whereas nonbeneficial mutations often prevail in small populations by chance, mutations that sweep through large populations typically confer a selective advantage. Here, however, we observe chance effects during range expansions that dramatically alter the gene pool even in large microbial populations. Initially well mixed populations of two fluorescently labeled strains of Escherichia coli develop well defined, sector-like regions with fractal boundaries in expanding colonies. The formation of these regions is driven by random fluctuations that originate in a thin band of pioneers at the expanding frontier. A comparison of bacterial and yeast colonies (Saccharomyces cerevisiae) suggests that this large-scale genetic sectoring is a generic phenomenon that may provide a detectable footprint of past range expansions.


Assuntos
Escherichia coli/genética , Deriva Genética , Saccharomyces cerevisiae/genética , Marcadores Genéticos , Modelos Genéticos , Seleção Genética
19.
Bioengineering (Basel) ; 7(4)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255280

RESUMO

Progress in metabolic engineering and synthetic and systems biology has made bioproduction an increasingly attractive and competitive strategy for synthesizing biomolecules, recombinant proteins and biofuels from renewable feedstocks. Yet, due to poor productivity, it remains difficult to make a bioproduction process economically viable at large scale. Achieving dynamic control of cellular processes could lead to even better yields by balancing the two characteristic phases of bioproduction, namely, growth versus production, which lie at the heart of a trade-off that substantially impacts productivity. The versatility and controllability offered by light will be a key element in attaining the level of control desired. The popularity of light-mediated control is increasing, with an expanding repertoire of optogenetic systems for novel applications, and many optogenetic devices have been designed to test optogenetic strains at various culture scales for bioproduction objectives. In this review, we aim to highlight the most important advances in this direction. We discuss how optogenetics is currently applied to control metabolism in the context of bioproduction, describe the optogenetic instruments and devices used at the laboratory scale for strain development, and explore how current industrial-scale bioproduction processes could be adapted for optogenetics or could benefit from existing photobioreactor designs. We then draw attention to the steps that must be undertaken to further optimize the control of biological systems in order to take full advantage of the potential offered by microbial factories.

20.
Nat Commun ; 11(1): 4758, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958811

RESUMO

Genetic programs operating in a history-dependent fashion are ubiquitous in nature and govern sophisticated processes such as development and differentiation. The ability to systematically and predictably encode such programs would advance the engineering of synthetic organisms and ecosystems with rich signal processing abilities. Here we implement robust, scalable history-dependent programs by distributing the computational labor across a cellular population. Our design is based on standardized recombinase-driven DNA scaffolds expressing different genes according to the order of occurrence of inputs. These multicellular computing systems are highly modular, do not require cell-cell communication channels, and any program can be built by differential composition of strains containing well-characterized logic scaffolds. We developed automated workflows that researchers can use to streamline program design and optimization. We anticipate that the history-dependent programs presented here will support many applications using cellular populations for material engineering, biomanufacturing and healthcare.


Assuntos
Modelos Genéticos , Biologia Sintética/métodos , Fenômenos Fisiológicos Celulares/genética , DNA/genética , DNA/metabolismo , Lógica , Recombinases/genética , Recombinases/metabolismo , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA