Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Appl Clin Med Phys ; : e14347, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576174

RESUMO

PURPOSE: This work investigated the dosimetric accuracy of the intensity-modulated bolus electron conformal therapy (IM-BECT) planning and delivery process using the decimal ElectronRT (eRT) treatment planning system. METHODS: An IM-BECT treatment plan was designed using eRT for a cylindrical, anthropomorphic retromolar trigone phantom. Treatment planning involved specification of beam parameters and design of a variable thickness wax bolus and Passive Radiotherapy Intensity Modulator for Electrons (PRIME) device, which was comprised of 33 tungsten island blocks of discrete diameters from 0.158 to 0.223 cm (Intensity Reduction Factors from 0.937 to 0.875, respectively) inside a 10.1 × 6.7 cm2 copper cutout. For comparison of calculation accuracy, a BECT plan was generated by copying the IM-BECT plan and removing the intensity modulation. For both plans, a 16 MeV electron beam was used with 104.7 cm source-to-surface distance to bolus. In-phantom TLD-100 measurements (N = 47) were compared with both eRT planned dose distributions, which used the pencil beam redefinition algorithm with modifications for passive electron intensity modulation (IM-PBRA). Dose difference and distance to agreement (DTA) metrics were computed for each measurement point. RESULTS: Comparison of measured dose distributions with planned dose distributions yielded dose differences (calculated minus measured) characterized by a mean and standard deviation of -0.36% ± 1.64% for the IM-BECT plan, which was similar to -0.36% ± 1.90% for the BECT plan. All dose measurements were within 5% of the planned dose distribution, with both the BECT and IM-BECT measurement sets having 46/47 (97.8%) points within 3% or within 3 mm of the respective treatment plans. CONCLUSIONS: It was found that the IM-BECT treatment plan generated using eRT was sufficiently accurate for clinical use when compared to TLD measurements in a cylindrical, anthropomorphic phantom, and was similarly accurate to the BECT treatment plan in the same phantom.

2.
J Appl Clin Med Phys ; 24(7): e13943, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36855930

RESUMO

PURPOSE: This work developed an x-ray-based method for performing factory quality assurance (QA) of Passive Radiotherapy Intensity Modulators for Electrons (PRIME) device fabrication. This method measures errors in position, diameter, and orientation of cylindrical island blocks on a hexagonal grid that comprises PRIME devices and the impact of such errors on the underlying intensity distribution. METHODS: X-ray images were acquired of six PRIME devices, which modeled three error cases (small random, large random, and systematic errors) for two island block diameters (0.158 and 0.352 cm). Island blocks in each device, 0.6 cm long tungsten cylinders of constant diameter, were spaced 0.6 cm on a hexagonal grid over approximately 8 cm square. Using a 50 kVp x-ray image, each island block projected a racetrack, whose perimeter was fit to a function that allowed determination of its position, diameter, and angular orientation (θ, ϕ). These measured parameters were input into a pencil beam algorithm (PBA) dose calculation performed in water (16 MeV, SSD = 103 cm) for each device. PBA calculated intensity distributions using measured and planned (exact) island block parameters were compared. RESULTS: Θ distributions for the 0.158 and 0.352 cm devices were nearly identical for each error case, with θ values for most island blocks being within 3.2°, 8.5°, and 7.5° for the small random, large random, and systematic error PRIME devices, respectively. Corresponding intensity differences between using measured and planned island block parameters were within 1.0% and 2.8% (small random), 2.2% and 4.8% (large random), and 3.2% and 6.7% (systematic) for the 0.158 and 0.352 cm devices, respectively. CONCLUSION: This approach provides a viable and economical method for factory QA of fabricated PRIME devices by determining errors in their planned intensity distribution from which their quality can be assessed prior to releasing to the customer.


Assuntos
Elétrons , Radioterapia de Intensidade Modulada , Humanos , Raios X , Radiografia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos
3.
J Appl Clin Med Phys ; 24(2): e13889, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610042

RESUMO

PURPOSE: Passive Radiotherapy Intensity Modulators for Electrons (PRIME) devices are comprised of cylindrical tungsten island blocks imbedded in a machinable foam slab within the patient's cutout. Intensity-modulated bolus electron conformal therapy (IM-BECT) uses PRIME devices to reduce dose heterogeneity caused by the irregular bolus surface. Heretofore, IM-BECT dose calculations used the pencil beam redefinition algorithm (PBRA) assuming perfect collimation. This study investigates modeling electron scatter into and out the sides of island blocks. METHODS: Dose distributions were measured in a water phantom at 7, 13, and 20 MeV for devices having nominal intensity reduction factors of 1.000 (foam only), 0.937, 0.812, and 0.688, corresponding to nominal island block diameters (dnom ) of 0.158, 0.273, and 0.352 cm, respectively. Pencil beam theory derived an effective diameter (dIS ) to account for in-scattered electrons as a function of dnom and beam energy (Ep,0 ). However, for out-scattered electrons, an effective diameter (dmod ) was estimated by best fitting measured data. RESULTS: In the modulated region (under island blocks, depth < R90 ), modified PBRA-calculated dose distributions showed 2%/2 mm passing rates for dnom  = 0.158, 0.273, and 0.352 cm of (100%, 100%, 100%) at 7 MeV, (100%, 100%, 93.5%) at 13 MeV, and (99.8%, 85.4%, and 71.5%) at 20 MeV. The largest dose differences (≤ 6%) occurred at the highest energy (20 MeV), largest dnom , shallowest depths (≤ 2 cm), and on central axis. CONCLUSIONS: An equation for modeling island block scatter, dmod (dnom , Ep,0 ), has been developed for use in the PBRA, insignificantly impacting calculation time. Although inaccuracy sometimes exceeded our 2%/2 mm criteria, it could be clinically acceptable, as superficial dose differences often fall inside the bolus. Also, patient PRIME devices are expected to have fewer large diameter island blocks than did test devices. Inaccuracies are attributed to out-scattered electrons having energy spectra different than the primary beams.


Assuntos
Elétrons , Radioterapia Conformacional , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Imagens de Fantasmas
4.
J Appl Clin Med Phys ; 22(10): 8-21, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34558774

RESUMO

PURPOSE: Bolus electron conformal therapy (BECT) is a clinically useful, well-documented, and available technology. The addition of intensity modulation (IM) to BECT reduces volumes of high dose and dose spread in the planning target volume (PTV). This paper demonstrates new techniques for a process that should be suitable for planning and delivering IM-BECT using passive radiotherapy intensity modulation for electrons (PRIME) devices. METHODS: The IM-BECT planning and delivery process is an addition to the BECT process that includes intensity modulator design, fabrication, and quality assurance. The intensity modulator (PRIME device) is a hexagonal matrix of small island blocks (tungsten pins of varying diameter) placed inside the patient beam-defining collimator (cutout). Its design process determines a desirable intensity-modulated electron beam during the planning process, then determines the island block configuration to deliver that intensity distribution (segmentation). The intensity modulator is fabricated and quality assurance performed at the factory (.decimal, LLC, Sanford, FL). Clinical quality assurance consists of measuring a fluence distribution in a plane perpendicular to the beam in a water or water-equivalent phantom. This IM-BECT process is described and demonstrated for two sites, postmastectomy chest wall and temple. Dose plans, intensity distributions, fabricated intensity modulators, and quality assurance results are presented. RESULTS: IM-BECT plans showed improved D90-10 over BECT plans, 6.4% versus 7.3% and 8.4% versus 11.0% for the postmastectomy chest wall and temple, respectively. Their intensity modulators utilized 61 (single diameter) and 246 (five diameters) tungsten pins, respectively. Dose comparisons for clinical quality assurance showed that for doses greater than 10%, measured agreed with calculated dose within 3% or 0.3 cm distance-to-agreement (DTA) for 99.9% and 100% of points, respectively. CONCLUSION: These results demonstrated the feasibility of translating IM-BECT to the clinic using the techniques presented for treatment planning, intensity modulator design and fabrication, and quality assurance processes.


Assuntos
Neoplasias da Mama , Radioterapia Conformacional , Elétrons , Feminino , Humanos , Mastectomia , Imagens de Fantasmas
5.
J Appl Clin Med Phys ; 21(12): 131-145, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33207033

RESUMO

PURPOSE: This project determined the range of island block geometric configurations useful for the clinical utilization of intensity-modulated bolus electron conformal therapy (IM-BECT). METHODS: Multiple half-beam island block geometries were studied for seven electron energies 7-20 MeV at 100 and 103 cm source-to-surface distance (SSD). We studied relative fluence distributions at 0.5 cm and 2.0 cm depths in water, resulting in 28 unique beam conditions. For each beam condition, we studied intensity reduction factor (IRF) values of 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95, and hexagonal packing separations for the island blocks of 0.50, 0.75, 1.00, 1.25, and 1.50 cm, that is, 30 unique IM configurations and 840 unique beam-IM combinations. A combination was deemed acceptable if the average intensity downstream of the intensity modulator agreed within 2% of that intended and the variation in fluence was less than ±2%. RESULTS: For 100 cm SSD, and for 0.5 cm depth, results showed that beam energies above 13 MeV did not exhibit sufficient scatter to produce clinically acceptable fluence (intensity) distributions for all IRF values (0.70-0.95). In particular, 20 MeV fluence distributions were unacceptable for any values, and acceptable 16 MeV fluence distributions were limited to a minimum IRF of 0.85. For the 2.0 cm depth, beam energies up to and including 20 MeV had acceptable fluence distributions. For 103 cm SSD and for 0.5 cm and 2.0 cm depths, results showed that all beam energies (7-20 MeV) had clinically acceptable fluence distributions for all IRF values (0.70-0.95). In general, the more clinically likely 103 cm SSD had acceptable fluence distributions with larger separations (r), which allow larger block diameters. CONCLUSION: The geometric operating range of island block separations and IRF values (block diameters) producing clinically appropriate IM electron beams has been determined.


Assuntos
Elétrons , Radioterapia Conformacional , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
J Appl Clin Med Phys ; 19(4): 75-86, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29756267

RESUMO

PURPOSE: This study evaluated a new electron collimation system design for Elekta 6-20 MeV beams, which should reduce applicator weights by 25%-30%. Such reductions, as great as 3.9 kg for the largest applicator, should result in considerably easier handling by members of the radiotherapy team. METHODS: Prototype 10 × 10 and 20 × 20-cm2 applicators, used to measure weight, in-field flatness, and out-of-field leakage dose, were constructed according to the previously published design with two minor modifications: (a) rather than tungsten, lead was used for trimmer material; and (b) continuous trimmer outer-edge bevel was approximated by three steps. Because of lead plate softness, a 0.32-cm aluminum plate replaced the equivalent lead thickness on the trimmer's downstream surface for structural support. Models of all applicators (6 × 6-25 × 25 cm2 ) with these modifications were inserted into a Monte Carlo (MC) model for dose calculations using 7, 13, and 20 MeV beams. Planar dose distributions were measured and calculated at 1- and 2-cm water depths to evaluate in-field beam flatness and out-of-field leakage dose. RESULTS: Prototype 10 × 10 and 20 × 20-cm2 applicator measurements agreed with calculated weights, in-field flatness, and out-of-field leakage doses for 7, 13, and 20 MeV beams. Also, MC dose calculations showed that all applicators (6 × 6-25 × 25 cm2 ) and 7, 13, and 20 MeV beams met our stringent in-field flatness specifications (±3% major axes; ±4% diagonals) and IEC out-of-field leakage dose specifications. CONCLUSIONS: Our results validated the new electron collimating system design for Elekta 6-20 MeV electron beams, which could serve as basis for a new clinical electron collimating system with significantly reduced applicator weights.


Assuntos
Aceleradores de Partículas , Elétrons , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
J Appl Clin Med Phys ; 19(3): 183-192, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603874

RESUMO

This study compares energy spectra of the multiple electron beams of individual radiotherapy machines, as well as the sets of spectra across multiple matched machines. Also, energy spectrum metrics are compared with central-axis percent depth-dose (PDD) metrics. METHODS: A lightweight, permanent magnet spectrometer was used to measure energy spectra for seven electron beams (7-20 MeV) on six matched Elekta Infinity accelerators with the MLCi2 treatment head. PDD measurements in the distal falloff region provided R50 and R80-20 metrics in Plastic Water® , which correlated with energy spectrum metrics, peak mean energy (PME) and full-width at half maximum (FWHM). RESULTS: Visual inspection of energy spectra and their metrics showed whether beams on single machines were properly tuned, i.e., FWHM is expected to increase and peak height decrease monotonically with increased PME. Also, PME spacings are expected to be approximately equal for 7-13 MeV beams (0.5-cm R90 spacing) and for 13-16 MeV beams (1.0-cm R90 spacing). Most machines failed these expectations, presumably due to tolerances for initial beam matching (0.05 cm in R90 ; 0.10 cm in R80-20 ) and ongoing quality assurance (0.2 cm in R50 ). Also, comparison of energy spectra or metrics for a single beam energy (six machines) showed outlying spectra. These variations in energy spectra provided ample data spread for correlating PME and FWHM with PDD metrics. Least-squares fits showed that R50 and R80-20 varied linearly and supralinearly with PME, respectively; however, both suggested a secondary dependence on FWHM. Hence, PME and FWHM could serve as surrogates for R50 and R80-20 for beam tuning by the accelerator engineer, possibly being more sensitive (e.g., 0.1 cm in R80-20 corresponded to 2.0 MeV in FWHM). CONCLUSIONS: Results of this study suggest a lightweight, permanent magnet spectrometer could be a useful beam-tuning instrument for the accelerator engineer to (a) match electron beams prior to beam commissioning, (b) tune electron beams for the duration of their clinical use, and (c) provide estimates of PDD metrics following machine maintenance. However, a real-time version of the spectrometer is needed to be practical.


Assuntos
Elétrons , Método de Monte Carlo , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
8.
J Appl Clin Med Phys ; 18(5): 259-270, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28801965

RESUMO

Prototype 10 × 10 and 20 × 20-cm2 electron collimators were designed for the Elekta Infinity accelerator (MLCi2 treatment head), with the goal of reducing the trimmer weight of excessively heavy current applicators while maintaining acceptable beam flatness (±3% major axes, ±4% diagonals) and IEC leakage dose. Prototype applicators were designed initially using tungsten trimmers of constant thickness (1% electron transmission) and cross-sections with inner and outer edges positioned at 95% and 2% off-axis ratios (OARs), respectively, cast by the upstream collimating component. Despite redefining applicator size at isocenter (not 5 cm upstream) and reducing the energy range from 4-22 to 6-20 MeV, the designed 10 × 10 and 20 × 20-cm2 applicator trimmers weighed 6.87 and 10.49 kg, respectively, exceeding that of the current applicators (5.52 and 8.36 kg, respectively). Subsequently, five design modifications using analytical and/or Monte Carlo (MC) calculations were applied, reducing trimmer weight while maintaining acceptable in-field flatness and mean leakage dose. Design Modification 1 beveled the outer trimmer edges, taking advantage of only low-energy beams scattering primary electrons sufficiently to reach the outer trimmer edge. Design Modification 2 optimized the upper and middle trimmer distances from isocenter for minimal trimmer weights. Design Modification 3 moved inner trimmer edges inward, reducing trimmer weight. Design Modification 4 determined optimal X-ray jaw positions for each energy. Design Modification 5 adjusted middle and lower trimmer shapes and reduced upper trimmer thickness by 50%. Design Modifications 1→5 reduced trimmer weights from 6.87→5.86→5.52→5.87→5.43→3.73 kg for the 10 × 10-cm2 applicator and 10.49→9.04→8.62→7.73→7.35→5.09 kg for the 20 × 20-cm2 applicator. MC simulations confirmed these final designs produced acceptable in-field flatness and met IEC-specified leakage dose at 7, 13, and 20 MeV. These results allowed collimation system design for 6 × 6-25 × 25-cm2 applicators. Reducing trimmer weights by as much as 4 kg (25 × 25-cm2 applicator) should result in easier applicator handling by the radiotherapy team.


Assuntos
Elétrons/uso terapêutico , Aceleradores de Partículas , Desenho de Equipamento , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
9.
J Appl Clin Med Phys ; 18(6): 10-19, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875590

RESUMO

This work introduces a new technology for electron intensity modulation, which uses small area island blocks within the collimating aperture and small area island apertures in the collimating insert. Due to multiple Coulomb scattering, electrons contribute dose under island blocks and lateral to island apertures. By selecting appropriate lateral positions and diameters of a set of island blocks and island apertures, for example, a hexagonal grid with variable diameter circular island blocks, intensity modulated beams can be produced for appropriate air gaps between the intensity modulator (position of collimating insert) and the patient. Such a passive radiotherapy intensity modulator for electrons (PRIME) is analogous to using physical attenuators (metal compensators) for intensity modulated x-ray therapy (IMXT). For hexagonal spacing, the relationship between block (aperture) separation (r) and diameter (d) and the local intensity reduction factor (IRF) is discussed. The PRIME principle is illustrated using pencil beam calculations for select beam geometries in water with half beams modulated by 70%-95% and for one head and neck field of a patient treated with bolus electron conformal therapy. Proof of principle is further illustrated by showing agreement between measurement and calculation for a prototype PRIME. Potential utilization of PRIME for bolus electron conformal therapy, segmented-field electron conformal therapy, modulated electron radiation therapy, and variable surface geometries is discussed. Further research and development of technology for the various applications is discussed. In summary, this paper introduces a practical, new technology for electron intensity modulation in the clinic, demonstrates proof of principle, discusses potential clinical applications, and suggests areas of further research and development.


Assuntos
Elétrons/uso terapêutico , Radioterapia de Intensidade Modulada/métodos , Humanos
10.
J Appl Clin Med Phys ; 17(5): 157-176, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685101

RESUMO

This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out-of field leakage dose. Specifically, off-axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out-of-field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out-of-field dose profiles. Off-axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in-plane, cross-plane, and both diagonal axes using a cylindrical ionization chamber with the 10 × 10 and 20 × 20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in-field beam flatness met our acceptance criteria (± 3% on major and ±4% on diagonal axes) and that out-of-field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross-plane out-of-field dose profiles showed greater leakage dose than in-plane profiles, attributed to the curved edges of the upper X-ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10 × 10 and 20 × 20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding model-ing of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in-plane axis. Using EGSnrc LATCH bit filtering to separately calculate out-of-field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out-of-field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose com-ponent resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system.


Assuntos
Elétrons , Cabeça , Aceleradores de Partículas/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação
11.
J Appl Clin Med Phys ; 17(5): 245­261, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685126

RESUMO

The purpose of this work was to evaluate differences in dose resulting from the use of copper aperture inserts compared to lead-alloy (Cerrobend) aperture inserts for electron beam therapy. Specifically, this study examines if copper aperture inserts can be used clinically with the same commissioning data measured using lead-alloy aperture inserts. The copper inserts were acquired from .decimal, LLC and matching lead-alloy, Cerrobend inserts were constructed in-house for 32 com-binations of nine square insert field sizes (2 × 2 to 20 × 20 cm2) and five applicator sizes (6 × 6 to 25 × 25 cm2). Percent depth-dose and off-axis relative dose profiles were measured using an electron diode in water for select copper and Cerrobend inserts for a subset of applicators (6 × 6, 10 × 10, 25 × 25 cm2) and energies (6, 12, 20 MeV) at 100 and 110 cm source-to-surface distances (SSD) on a Varian Clinac 21EX accelerator. Dose outputs were measured for all field size-insert combina-tions and five available energies (6-20 MeV) at 100 cm SSD and for a smaller subset at 110 cm SSD. Using these data, 2D planar absolute dose distributions were generated and compared. Criteria for agreement were ± 2% of maximum dose or 1 mm distance-to-agreement for 99% of points. A gamma analysis of the beam dosimetry showed 94 of 96 combinations of insert size, applicator, energy, and SSD were within the 2%/1 mm criteria for > 99% of points. Outside the field, copper inserts showed less bremsstrahlung dose under the insert compared to Cerrobend (greatest difference was 2.5% at 20 MeV and 100 cm SSD). This effect was most prominent at the highest energies for combinations of large applicators with small field sizes, causing some gamma analysis failures. Inside the field, more electrons scattered from the collimator edge of copper compared to Cerrobend, resulting in an increased dose at the field edge for copper at shallow depths (greatest increase was 1% at 20 MeV and 100 cm SSD). Dose differences decreased as the SSD increased, with no gamma failures at 110 cm SSD. Inserts for field sizes ≥ 6 × 6 cm2 at any energy, or for small fields (≤ 4 × 4 cm2) at energies < 20 MeV, showed dosimetric differences less than 2%/1 mm for more than 99% of points. All areas of comparison criteria failures were from lower out-of-field dose under copper inserts due to a reduction in bremsstrahlung production, which is clinically beneficial in reducing dose to healthy tissue outside of the planned treatment volume. All field size-applicator size-energy combinations passed 3%/1 mm criteria for 100% of points. Therefore, it should be clinically acceptable to utilize copper insets with dose distributions measured with Cerrobend inserts for treatment planning dose calculations and monitor unit calculations.


Assuntos
Ligas/química , Cobre/química , Elétrons , Chumbo/química , Imagens de Fantasmas , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
12.
J Appl Clin Med Phys ; 17(3): 52-60, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167259

RESUMO

The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.


Assuntos
Algoritmos , Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/normas , Humanos , Dosagem Radioterapêutica
13.
J Appl Clin Med Phys ; 15(6): 4849, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25493509

RESUMO

The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV). 


Assuntos
Simulação por Computador , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação , Algoritmos , Elétrons , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Raios X
14.
J Appl Clin Med Phys ; 15(2): 4490, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24710434

RESUMO

In 2009, Mary Bird Perkins Cancer Center (MBPCC) established a Radiation Oncology Physics Residency Program to provide opportunities for medical physics residency training to MS and PhD graduates of the CAMPEP-accredited Louisiana State University (LSU)-MBPCC Medical Physics Graduate Program. The LSU-MBPCC Program graduates approximately six students yearly, which equates to a need for up to twelve residency positions in a two-year program. To address this need for residency positions, MBPCC has expanded its Program by developing a Consortium consisting of partnerships with medical physics groups located at other nearby clinical institutions. The consortium model offers the residents exposure to a broader range of procedures, technology, and faculty than available at the individual institutions. The Consortium institutions have shown a great deal of support from their medical physics groups and administrations in developing these partnerships. Details of these partnerships are specified within affiliation agreements between MBPCC and each participating institution. All partner sites began resident training in 2011. The Consortium is a network of for-profit, nonprofit, academic, community, and private entities. We feel that these types of collaborative endeavors will be required nationally to reach the number of residency positions needed to meet the 2014 ABR certification requirements and to maintain graduate medical physics training programs.


Assuntos
Certificação , Física Médica/educação , Internato e Residência/normas , Radioterapia (Especialidade)/educação , Humanos , Médicos , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Sociedades Médicas , Estados Unidos
15.
Med Phys ; 39(12): 7462-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231295

RESUMO

PURPOSE: Ion chamber dosimetry is being used to calibrate dose for cell irradiations designed to investigate photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. This study performed a dosimetry intercomparison for synchrotron-produced monochromatic x-ray beams at 25 and 35 keV. Ion chamber depth-dose measurements in a polymethylmethacrylate (PMMA) phantom were compared with the product of MCNP5 Monte Carlo calculations of dose per fluence and measured incident fluence. METHODS: Monochromatic beams of 25 and 35 keV were generated on the tomography beamline at CAMD. A cylindrical, air-equivalent ion chamber was used to measure the ionization created in a 10 × 10 × 10-cm(3) PMMA phantom for depths from 0.6 to 7.7 cm. The American Association of Physicists in Medicine TG-61 protocol was applied to convert measured ionization into dose. Photon fluence was determined using a NaI detector to make scattering measurements of the beam from a thin polyethylene target at angles 30°-60°. Differential Compton and Rayleigh scattering cross sections obtained from xraylib, an ANSI C library for x-ray-matter interactions, were applied to derive the incident fluence. MCNP5 simulations of the irradiation geometry provided the dose deposition per photon fluence as a function of depth in the phantom. RESULTS: At 25 keV the fluence-normalized MCNP5 dose overestimated the ion-chamber measured dose by an average of 7.2 ± 3.0%-2.1 ± 3.0% for PMMA depths from 0.6 to 7.7 cm, respectively. At 35 keV the fluence-normalized MCNP5 dose underestimated the ion-chamber measured dose by an average of 1.0 ± 3.4%-2.5 ± 3.4%, respectively. CONCLUSIONS: These results showed that TG-61 ion chamber dosimetry, used to calibrate dose output for cell irradiations, agreed with fluence-normalized MCNP5 calculations to within approximately 7% and 3% at 25 and 35 keV, respectively.


Assuntos
Algoritmos , Método de Monte Carlo , Radiometria/instrumentação , Radiometria/métodos , Software , Síncrotrons/instrumentação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador , Raios X
16.
Med Phys ; 39(12): 7412-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231291

RESUMO

PURPOSE: This work investigates the dose-response curves of GAFCHROMIC(®) EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. METHODS: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 × 10 × 10-cm(3) polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. RESULTS: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. CONCLUSIONS: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.


Assuntos
Dosimetria Fotográfica/instrumentação , Síncrotrons , Raios X , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Med Phys ; 38(12): 6610-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149843

RESUMO

PURPOSE: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). METHODS: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of the higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle(3) treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). RESULTS: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. CONCLUSIONS: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.


Assuntos
Radiometria/instrumentação , Radiometria/métodos , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos , Algoritmos , Análise por Conglomerados , Desenho Assistido por Computador , Elétrons/uso terapêutico , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Aprendizagem , Distribuição Normal , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Med Phys ; 36(7): 3239-79, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19673223

RESUMO

The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of radiochromic film for electrons is addressed, and radiographic film that is no longer available has been replaced by film that is available. Realistic stopping-power data are incorporated when appropriate along with enhanced tables of electron fluence data. A larger list of clinical applications of electron beams is included in the full TG-70 report available at http://www.aapm.org/pubs/reports. Descriptions of the techniques in the clinical sections are not exhaustive but do describe key elements of the procedures and how to initiate these programs in the clinic. There have been no major changes since the TG-25 report relating to flatness and symmetry, surface dose, use of thermoluminescent dosimeters or diodes, virtual source position designation, air gap corrections, oblique incidence, or corrections for inhomogeneities. Thus these topics are not addressed in the TG-70 report.


Assuntos
Elétrons , Radiometria/métodos , Radioterapia/métodos , Algoritmos , Calibragem , Humanos , Imagens de Fantasmas , Fótons , Garantia da Qualidade dos Cuidados de Saúde/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Água/química , Filme para Raios X
19.
Phys Med Biol ; 54(1): 105-16, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19075360

RESUMO

The purpose of this paper was to study the source model for a Monte Carlo simulation of electron beams from a medical linear accelerator. In a prior study, a non-divergent Gaussian source with a full-width at half-maximum (FWHM) of 0.15 cm was successful in predicting relative dose distributions for electron beams with applicators. However, for large fields with the applicator removed, discrepancies were found between measured and calculated profiles, particularly in the shoulder region. In this work, the source was changed to a divergent Gaussian spatial distribution and the FWHM parameter was varied to produce better agreement with measured data. The influence of the FWHM source parameter on profiles was observed at multiple locations in the simulation geometry including in-air fluence profiles at a 95 cm source-to-surface distance (SSD), percent depth dose profiles and off-axis profiles (OARs) in a water phantom for two SSDs, 80 and 100 cm. For a 6 MeV 40 x 40 cm(2) OAR profile, discrepancies in the shoulder region were reduced from 15% to 4% using a FWHM value of 0.45 cm. The optimal FWHM values for the other energies were 0.45 cm for 9 MeV, 0.22 for 12 MeV, 0.25 for 16 MeV and 0.2 cm for 20 MeV. Although this range of values was larger than measured focal spot sizes reported by other researchers, using the increased FWHM values improved the fit at most locations in the simulation geometry, giving confidence that the model could be used with a variety of SSDs and field sizes.


Assuntos
Elétrons , Método de Monte Carlo , Modelos Químicos , Imagens de Fantasmas , Probabilidade , Água/química , Raios X
20.
Int J Radiat Oncol Biol Phys ; 70(3): 883-91, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18164857

RESUMO

PURPOSE: To investigate helical tomotherapy (HT) intensity-modulated radiotherapy (IMRT) as a postoperative treatment for parotid gland tumors. METHODS AND MATERIALS: Helical tomotherapy plans were developed for 4 patients previously treated with segmental multileaf collimator (SMLC) IMRT. A primary planning target volume (PTV64) and two secondary PTVs (PTV60, PTV54) were defined. The clinical goals from the SMLC plans were applied as closely as possible to the HT planning. The SMLC plans included bolus, whereas HT plans did not. RESULTS: In general, the HT plans showed better target coverage and target dose homogeneity. The minimum doses to the desired coverage volume were greater, on average, in the HT plans for all the targets. Minimum PTV doses were larger, on average, in the HT plans by 4.6 Gy (p = 0.03), 4.8 Gy (p = 0.06), and 4.9 Gy (p = 0.06) for PTV64, PTV60, and PTV54, respectively. Maximum PTV doses were smaller, on average, by 2.9 Gy (p = 0.23), 3.2 Gy (p = 0.02), and 3.6 Gy (p = 0.03) for PTV64, PTV60, and PTV54, respectively. Average dose homogeneity index was statistically smaller in the HT plans, and conformity index was larger for PTV64 in 3 patients. Tumor control probabilities were higher for 3 of the 4 patients. Sparing of normal structures was comparable for the two techniques. There were no significant differences between the normal tissue complication probabilities for the HT and SMLC plans. CONCLUSIONS: Helical tomotherapy treatment plans were comparable to or slightly better than SMLC plans. Helical tomotherapy is an effective alternative to SMLC IMRT for treatment of parotid tumors.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias Parotídeas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Carcinoma Adenoide Cístico/diagnóstico por imagem , Carcinoma Adenoide Cístico/patologia , Carcinoma Adenoide Cístico/radioterapia , Humanos , Neoplasias Parotídeas/diagnóstico por imagem , Neoplasias Parotídeas/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Espiral , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA