Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(26): 12370-12376, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897587

RESUMO

Rising energy needs and environmental issues have prompted the creation of effective and affordable photocatalysts for converting biomass. Utilizing abundant biomass, oxidation of 5-hydroxymethylfurfural (HMF) emerges as a method for generating high-value chemicals from biomass, offering an alternative to fossil fuels. We synthesized defect-engineered metal oxides (ZnO and WO3) by calcination with NaBH4 as a reducing agent. Atomic-level analyses identified oxygen vacancy defects induced by the reduction of metal ions within the metal oxide nanoparticles. Further analysis showed an unchanged band gap but an up to 4-fold increase in current density. This enhancement is attributed to the trapping of electrons in defect sites created during the calcination process. The formation of new electron donor states hindered photogenerated electron-hole recombination, enhancing the photocatalytic efficiency of the metal oxide. The photocatalytic degradation yield of HMF was over 95%, and the selective organic products 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) were obtained without byproducts. Kinetic studies demonstrated that the photocatalytic conversion reaction rates were accelerated by up to 3.5-fold. Improved photocatalytic activity for HMF oxidation was achieved by introducing oxygen vacancy defects upon the reduction of metal ions within the metal oxides. Our results provide a promising approach for designing efficient photocatalysts.

2.
J Am Chem Soc ; 145(29): 16058-16068, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37441741

RESUMO

Superoxide dismutases (SODs) are essential antioxidant enzymes that prevent massive superoxide radical production and thus protect cells from damage induced by free radicals. However, this concept has rarely been applied to directly impede the function of driver oncogenes, thus far. Here, leveraging efforts from SOD model complexes, we report the novel finding of biomimetic copper complexes that efficiently scavenge intracellularly generated free radicals and, thereby, directly access the core consequence of colorectal cancer suppression. We conceived four structurally different SOD-mimicking copper complexes that showed distinct disproportionation reaction rates of intracellular superoxide radical anions. By replenishing SOD models, we observed a dramatic reduction of intracellular reactive oxygen species (ROS) and adenine 5'-triphosphate (ATP) concentrations that led to cell cycle arrest at the G2/M stage and induced apoptosis in vitro and in vivo. Our results showcase how nature-mimicking models can be designed and fine-tuned to serve as a viable chemotherapeutic strategy for cancer treatment.


Assuntos
Neoplasias Colorretais , Superóxidos , Humanos , Superóxidos/metabolismo , Cobre/metabolismo , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
3.
Invest New Drugs ; 41(1): 105-114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538258

RESUMO

Dysregulated Wnt signaling is associated with malignant oncogenic transformation, especially in colon cancer. Recently, numerous drugs have been developed based on tumorigenesis biomarkers, thus having high potential as drug targets. Likewise, WNT/ß-catenin pathway members are attractive therapeutic targets for colon cancer and are currently in various stages of development. However, although inhibitors of proteins regulating the WNT/ß-catenin signaling pathway have been extensively studied, they have yet to be clinically approved, and the underlying molecular mechanism(s) of their anticancer effects remain poorly understood. Herein, we show that a novel WNT/ß-catenin inhibitor, DGG-300273, inhibits colon cancer cell growth in a Wnt-dependent manner due to upregulation of the BCL2-family protein Bim and caspase-dependent apoptotic cell death. Additionally, DGG-300273-mediated cell death occurs by increased reactive oxygen species (ROS), as shown by abrogation of apoptotic cell death and ROS production following pretreatment with the antioxidant N-acetylcysteine. These results suggest that DGG-300273 represents a promising investigational drug for the treatment of Wnt-associated cancer, thus warranting further characterization and study.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt
4.
J Biol Inorg Chem ; 27(1): 37-47, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34714402

RESUMO

Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P-O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P-O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4 h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.


Assuntos
Tiossemicarbazonas , Zinco , Fosfatase Alcalina/metabolismo , Hidrólise , Cinética , Ligantes , Zinco/química
5.
Langmuir ; 38(22): 7077-7084, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35608255

RESUMO

Short peptides designed to self-associate into amyloid fibers with metal ion-binding ability have been used to catalyze various types of chemical reactions. This manuscript demonstrates that one of these short-peptide fibers coordinated with CuII can exhibit melanosomal functions. The coordinated CuII and the amyloid structure itself are differentially functional in accelerating oxidative self-association of dopamine into melanin-like species and in regulating their material properties (e.g., water dispersion, morphology, and the density of unpaired electrons). The results have implications for the role of functional amyloids in melanin biosynthesis and for designing peptide-based supramolecular structures with various emergent functions.


Assuntos
Amiloide , Melaninas , Amiloide/química , Peptídeos beta-Amiloides/química , Proteínas Amiloidogênicas/química , Melaninas/química , Peptídeos/química
6.
Inorg Chem ; 61(42): 16887-16894, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36223637

RESUMO

A charge mismatch between transition-metal-ion dopants and metal oxide nanoparticles (MO NPs) within an engineered complex engenders a significant number of oxygen vacancies (VO) on the surface of the MO NP construct. To elucidate in-depth the mechanism of this tendency, Co ions with different charge states (Co3+ and Co2+) were doped into ZnO NPs, and their atomic structural changes were correlated with their photocatalytic efficiency. We ascertained that the increase of the Zn-O bond distances was distinctly affected by Co3+-ion doping, and, subsequently, the number of VO was noticeably increased. We further investigated the mechanistic pathways of the photocatalytic oxidation of 2,5-hydroxymethylfurfural (HMF), which have been widely investigated as biomass derivatives because of their potential use as precursors for the synthesis of sustainable alternatives to petrochemical substances. To identify the reaction products in each oxidation step, selective oxidation products obtained from HMF in the presence of pristine ZnO NPs, Co3+- and Co2+-ion-doped ZnO NPs were evaluated. We confirmed that Co3+-ion-doped ZnO NPs can efficiently and selectively oxidize HMF with a good conversion rate (∼40%) by converting HMF to 2,5-furandicarboxylic acid (FDCA). The present study demonstrates the feasibility of improving the production efficiency of FDCA (an alternative energy material) by using enhanced photocatalytic MO NPs with the help of the charge mismatch between MO and metal-ion dopants.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/química , Biomassa , Nanopartículas Metálicas/química , Íons , Compostos Orgânicos , Oxigênio
7.
Mol Biol Rep ; 48(2): 1651-1658, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33580460

RESUMO

SVCT2, Sodium-dependent Vitamin C Transporter 2, uniquely transports ascorbic acid (also known as vitamin C and ascorbate) into all types of cells. Vitamin C is an essential nutrient that must be obtained through the diet and plasma levels are tightly regulated by transporter activity. Vitamin C plays an important role in antioxidant defenses and is a cofactor for many enzymes that enable hormone synthesis, oxygen sensing, collagen synthesis and epigenetic pathways. Although SVCT2 has various functions, regulation of its expression/activity remains poorly understood. We found a p53-binding site, within the SVCT2 promoter, using a transcription factor binding-site prediction tool. In this study, we show that p53 can directly repress SVCT2 transcription by binding a proximal- (~-185 to -171 bp) and a distal- (~-1800 to -1787 bp) p53-responsive element (PRE), Chromatin immunoprecipitation assays showed that PRE-bound p53 interacts with the corepressor-histone deacetylase 3 (HDAC3), resulting in deacetylation of histones Ac-H4, at the proximal promoter, resulting in transcriptional silencing of SVCT2. Overall, our data suggests that p53 is a potent transcriptional repressor of SVCT2, a critical transporter of diet-derived ascorbic acid, across the plasma membranes of numerous essential tissue cell types.


Assuntos
Antioxidantes/metabolismo , Histona Desacetilases/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Proteína Supressora de Tumor p53/genética , Animais , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Sítios de Ligação/genética , Cromatina/genética , Fibroblastos , Células Hep G2 , Humanos , Camundongos , Ligação Proteica , Proteínas Repressoras/genética , Transportadores de Sódio Acoplados à Vitamina C/antagonistas & inibidores
8.
Chem Soc Rev ; 49(24): 8988-9027, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33316016

RESUMO

There are mechanistic dichotomies with regard to the formation, electronic structures and reaction mechanisms of metal-oxygen intermediates, since these metal-oxygen species could be composed of different resonance structures or canonical structures of the oxidation states of metals and ligands, which may undergo different reaction pathways. Even the same metal-oxygen intermediates, such as metal-oxo species, may undergo an electron-transfer pathway or a direct hydrogen or oxygen atom transfer pathway depending on the one-electron redox potentials of metal-oxo species and substrates. Electron-transfer pathways are also classified into two mechanisms, such as outer-sphere and inner-sphere pathways. The one-electron redox potentials of metal-oxygen species and substrates are also shifted because of the binding of acids, which can result from either hydrogen bonding or protonation. There are a rebound pathway and a non-rebound pathway following the initial electron transfer or hydrogen atom transfer step to produce hydroxylated products, depending on the one-electron redox potentials of metal-oxo species and substrates. Nucleophilic reactions can be switched to electrophilic pathways, depending on reaction conditions such as reaction temperature. Spin states of metal-oxygen intermediates are also an important factor that controls the redox reactivity of oxidants in oxidation reactions. Here, we review such various mechanistic dichotomies in redox reactions of metal-oxygen intermediates with the emphasis on understanding and controlling the redox reactivity of metal-oxygen intermediates from experimental and theoretical points of view.

9.
Sensors (Basel) ; 21(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670737

RESUMO

Cylinder deactivation (CDA) is an effective technique to improve fuel economy in spark ignition (SI) engines. This technique enhances volumetric efficiency and reduces throttling loss. However, practical implementation is restricted due to torque fluctuations between individual cylinders that cause noise, vibration, and harshness (NVH) issues. To ease torque deviation of the CDA, we propose an in-cylinder pressure based 48V mild-hybrid starter-generator (MHSG) control strategy. The target engine realizes CDA with a specialized engine configuration of separated intake manifolds to independently control the airflow into the cylinders. To handle the complexity of the combined CDA and mild-hybrid system, GT-POWER simulation environment was integrated with a SI turbulent combustion model and 48V MHSG model with actual part specifications. The combustion model is essential for in-cylinder pressure-based control; thus, it is calibrated with actual engine experimental data. The modeling results demonstrate the precise accuracy of the engine cylinder pressures and of quantities such as MAF, MAP, BMEP, and IMEP. The proposed control algorithm also showed remarkable control performance, achieved by instantaneous torque calculation and dynamic compensation, with a 99% maximum reduction rate of engine torque deviation under target CDA operations.

10.
J Am Chem Soc ; 142(8): 3891-3904, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32026685

RESUMO

We report for the first time electron-transfer (ET) properties of mononuclear nonheme iron-oxo and -imido complexes with the formal oxidation states of five and six, such as an iron(V)-imido TAML cation radical complex, which is formally an iron(VI)-imido complex [FeV(NTs)(TAML+•)] (1; NTs = tosylimido), an iron(V)-imido complex [FeV(NTs)(TAML)]- (2), and an iron(V)-oxo complex [FeV(O)(TAML)]- (3). The one-electron reduction potential (Ered vs SCE) of 1 was determined to be 0.86 V, which is much more positive than that of 2 (0.30 V), but the Ered of 3 is the most positive (1.04 V). The rate constants of ET of 1-3 were analyzed in light of the Marcus theory of adiabatic outer-sphere ET to determine the reorganization energies (λ) of ET reactions with 1-3; the λ of 1 (1.00 eV) is significantly smaller than those of 2 (1.98 eV) and 3 (2.25 eV) because of the ligand-centered ET reduction of 1 as compared to the metal-centered ET reduction of 2 and 3. In oxidation reactions, reactivities of 1-3 toward the nitrene transfer (NT) and oxygen atom transfer (OAT) to thioanisole and its derivatives and the C-H bond activation reactions, such as the hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, were compared experimentally. The differences in the redox reactivity of 1-3 depending on the reaction types, such as NT and OAT versus HAT, were interpreted by performing density functional theory calculations, showing that the ligand-centered reduction seen on ET reactions can switch to metal-centered reduction in NT and HAT.

11.
Biochem Biophys Res Commun ; 527(1): 305-310, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446385

RESUMO

Non-small lung cancer (NSCLC) is the most common cancer in the world. The epidermal growth factor receptor (EGFR) gene is mutated in approximately 10% of lung cancer cases in the US and 50% of lung cancer in Asia. The representative target therapeutic agent, erlotinib (EGFR tyrosine kinase inhibitor; EGFR TKI), is effective in inactivating EGFR in lung cancer patients. However, approximately 50-60% of patients are resistant to EGFR TKI. These populations are associated with the EGFR mutation. To overcome resistance to EGFR TKI, we discovered a JAK1 inhibitor, CJ14939. We investigated the efficacy of CJ14939 in human NSCLC cell lines in vitro and in vivo. Our results showed that CJ14939 induced the inhibition of cell growth. Moreover, we demonstrated that combination treatment with erlotinib and CJ14939 induced cell death in vitro and inhibited tumor growth in vivo. In addition, we confirmed the suppression of phosphorylated EGFR, JAK1, and Stat3 expression in erlotinib and CJ14939-treated human NSCLC cell lines. Our results provide evidence that JAK inhibition overcomes resistance to EGFR TKI in human NSCLCs.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cloridrato de Erlotinib/farmacologia , Janus Quinase 1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/química , Feminino , Humanos , Janus Quinase 1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Invest New Drugs ; 38(6): 1696-1706, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32462369

RESUMO

Inhibitor of apoptosis proteins (IAPs) are overexpressed in the majority of cancers and prevent apoptosis by inhibiting caspases. IAPs have therefore attracted considerable attention as potential targets for anticancer therapy. Here, we demonstrated that HM90822 (abbreviated HM822; a new synthetic IAP antagonist) induced apoptotic cell death via proteasome-dependent degradation of BIR2/3 domain-containing IAPs in human pancreatic cancer cells. HM822 inhibited the expression of XIAP and cIAP1/2 proteins in Panc-1 and BxPC-3 cells, which are sensitive to HM822. HM822 also induced IAP ubiquitination and promoted proteasome-dependent IAP degradation. However, cells expressing phospho-XIAP (Ser87) and AKT exhibited resistance to HM822. In other words, the overexpression of AKT-CA (constitutive active form for AKT) or AKT-WT induced resistance to HM822. In addition, in Panc-1 xenograft and orthotopic mouse models, we revealed that tumor growth was suppressed by the administration of HM822. Taken together, these results suggest that HM822 induces apoptosis through ubiquitin/proteasome-dependent degradation of BIR3 domain-containing IAPs. These findings suggest that phospho-XIAP and phospho-AKT may be used as biomarkers for predicting the efficacy of HM822 in pancreatic cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carga Tumoral/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
13.
Br J Cancer ; 120(9): 941-951, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944457

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MEK 1/2) are central components of the RAS signalling pathway and are attractive targets for cancer therapy. These agents continue to be investigated in KRAS mutant colon cancer but are met with significant resistance. Clinical investigations have demonstrated that these strategies are not well tolerated by patients. METHODS: We investigated a biomarker of response for MEK inhibition in KRAS mutant colon cancers by LC-MS/MS analysis. We tested the MEK inhibitor in PIK3CA wild(wt) and mutant(mt) colon cancer cells. In addition, we tested the combinational effects of MEK and TNKS inhibitor in vitro and in vivo. RESULTS: We identified ß-catenin, a key mediator of the WNT pathway, in response to MEK inhibitor. MEK inhibition led to a decrease in ß-catenin in PIK3CA wt colon cancer cells but not in mt. Tumour regression was promoted by combination of MEK inhibition and NVP-TNS656, which targets the WNT pathway. Furthermore, inhibition of MEK promoted tumour regression in colon cancer patient-derived xenograft models expressing PIK3CA wt. CONCLUSIONS: We propose that inhibition of the WNT pathway, particularly ß-catenin, may bypass resistance to MEK inhibition in human PIK3CA mt colon cancer. Therefore, we suggest that ß-catenin is a potential predictive marker of MEK inhibitor resistance.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , beta Catenina/metabolismo , Acetamidas/farmacologia , Animais , Biomarcadores Farmacológicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias do Colo/metabolismo , Farmacorresistência Viral , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 3/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/antagonistas & inibidores
14.
Physiol Plant ; 165(2): 427-441, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30575049

RESUMO

Ionizing radiation is ubiquitous in the environment and can cause mutagenesis in living organisms. In this study, we examined the effects of neutron irradiation on tomato plants. Neutron irradiation decreased tomato germination rates, but most irradiated tomato plants did not show any significant phenotype. However, tomato mutants infected by Tomato yellow leaf curl virus (TYLCV) displayed resistance against TYLCV compared to the wild type (WT), which showed disease symptoms. RNA-Seq data demonstrated that the expression profiles of eight tomato mutants were significantly different from that of the WT. The transcriptomes obtained from presoaked seeds were highly altered compared to those of dry seeds. Increased irradiation time resulted in severe changes in the tomato transcriptome; however, different neutron irradiation intensities affected the expressions of different sets of genes. A high number of single-nucleotide polymorphisms in tomato transcriptomes suggest that neutron irradiation strongly impacts plant transcriptomes. The transition/transversion values among mutants were almost constant and were lower than that of the non-irradiated sample (WT), suggesting that neutron irradiation caused an effect. Taken together, this is the first report showing the effects of neutron irradiation on tomato plants by transcriptome analyses.


Assuntos
Begomovirus/patogenicidade , Perfilação da Expressão Gênica , Nêutrons , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Processamento Alternativo/genética , Processamento Alternativo/efeitos da radiação , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Germinação/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Mutação/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único/genética , Sementes/efeitos da radiação , Transcriptoma/genética
15.
Inorg Chem ; 58(19): 12964-12974, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31524386

RESUMO

To explore the reactivity of copper-alkylperoxo species enabled by the heterolytic peroxide activation, room-temperature stable mononuclear nonheme copper(II)-alkylperoxo complexes bearing a N-(2-ethoxyethanol)-bis(2-picolyl)amine ligand (HN3O2), [CuII(OOR)(HN3O2)]+ (R = cumyl or tBu), were synthesized and spectroscopically characterized. A combined experimental and computational investigation on the reactivity and reaction mechanisms in the phosphorus oxidation, C-H bond activation, and aldehyde deformylation reactions by the copper(II)-alkylperoxo complexes has been conducted. DFT-optimized structures suggested that a hydrogen bonding interaction exists between the ethoxyethanol backbone of the HN3O2 ligand and either the proximal or distal oxygen atom of the alkylperoxide moiety, and this interaction consequently results in the enhanced stability of the copper(II)-alkylperoxo species. In the phosphorus oxidation reaction, both experimental and computational results indicated that a phosphine-triggered heterolytic O-O bond cleavage occurred to yield phosphine oxide and alcohol products. DFT calculations suggested that (i) the H-bonding between the ethoxyethanol backbone and distal oxygen of the alkylperoxide moiety and (ii) the phosphine binding to the proximal oxygen of the alkylperoxide moiety engendered the heterolytic peroxide activation. In the C-H bond activation reactions, temperature-dependent reactivity of the copper(II)-alkylperoxo complexes was observed, and a relatively strong activation energy of 95 kcal mol-1 was required to promote the homolytic peroxide activation. A rate-limiting hydrogen atom abstraction reaction of xanthene by the putative copper(II)-oxyl radical resulted in the formation of the dimeric copper product and the substrate radical that further underwent autocatalytic oxidation reactions to form an oxygen incorporated product. Finally, amphoteric reactivity of copper(II)-alkylperoxo complexes has been assessed by conducting kinetic studies and product analysis of the aldehyde deformylation reaction.

16.
Chemistry ; 24(68): 17927-17931, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30267428

RESUMO

A mononuclear manganese(V)-oxo complex with tetraamido macrocyclic ligand (TAML), [MnV (O)(TAML)]- (1), is a sluggish oxidant in oxidation reactions. Herein, a mononuclear manganese(V)-oxo TAML cation radical complex, [MnV (O)(TAML+. )] (2), is reported. It was synthesized by reacting [MnIII (TAML)]- with 3.0 equivalents of [RuIII (bpy)3 ]3+ or upon addition of one-electron oxidant to 1 and then characterized thoroughly with various spectroscopic techniques along with DFT calculations. Although 1 is a sluggish oxidant, 2 is a strong oxidant capable of activating C-H bonds of hydrocarbons (i.e., hydrogen atom transfer reaction) and transferring its oxygen atom to thioanisoles and olefins (i.e., oxygen atom transfer reaction).

17.
J Am Chem Soc ; 139(41): 14372-14375, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28960973

RESUMO

A mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [FeV(NTs)(TAML)]- (1), was oxidized by one-electron oxidants, affording formation of an iron(V)-imido TAML cation radical species, [FeV(NTs)(TAML+•)] (2); 2 is a diamagnetic (S = 0) complex, resulting from the antiferromagnetic coupling of the low-spin iron(V) ion (S = 1/2) with the one-electron oxidized ligand (TAML+•). 2 is a competent oxidant in C-H bond functionalization and nitrene transfer reaction, showing that the reactivity of 2 is greater than that of 1.


Assuntos
Elétrons , Ferro/química , Iminas/química , Ligantes , Oxirredução
18.
J Am Chem Soc ; 139(26): 8800-8803, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28628312

RESUMO

Mononuclear nonheme iron(V)-oxo complexes have been reported previously. Herein, we report the first example of a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [(TAML)FeV(NTs)]- (1). The spectroscopic characterization of 1 revealed an S = 1/2 Fe(V) oxidation state, an Fe-N bond length of 1.65(4) Å, and an Fe-N vibration at 817 cm-1. The reactivity of 1 was demonstrated in C-H bond functionalization and nitrene transfer reactions.


Assuntos
Complexos de Coordenação/química , Imidas/química , Ferro/química , Aminação , Heme/química , Ligantes , Compostos Macrocíclicos/química , Estrutura Molecular
19.
Biochem Biophys Res Commun ; 494(3-4): 550-555, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29061308

RESUMO

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is a viral protein expressed in all EBV-infected cells that induces malignant transformation. EBNA1 is reported to contribute to tumor progression through an increase in reactive oxygen species via nicotinamide adenine dinucleotide phosphate oxidase. However, the underlying molecular mechanism of EBNA1-induced ROS accumulation in gastric cancer is poorly understood. Here, we demonstrated that miR34a regulation by EBNA1 determined cell fate in EBV-infected gastric cancer cells. ROS content and NOX2 expression were higher in EBNA1-expressing SNU719 cells than in EBNA1-nonexpressing SNU638 cells. Downregulation of NOX2 using siRNA technology in SNU719 cells decreased cell viability and ROS content. Regulation of EBNA1 expression in EBV-associated gastric cancers modulated NOX2 expression, ROS content and cell viability. We also showed that upregulation of NOX2 by EBNA1 was mediated by downregulating miRNA34a. Finally, overexpression of miR34a in EBNA1-expressing SNU719 cells induced typical apoptosis, suggesting that reactivation of miR34a in EBNA1-expressing gastric cancer cells could be a strategy for treatment of EBV-infected gastric cancer cells.


Assuntos
Sobrevivência Celular , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Neoplasias Gástricas/patologia
20.
Biochem Biophys Res Commun ; 491(2): 303-309, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28735865

RESUMO

Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is an oncoviral protein that plays a pivotal role in EBV-induced oncogenic transformation. The function of LMP1 in EBV-induced oncogenesis has been well studied. However, the molecular mechanisms underlying LMP1 protein stability remain poorly understood. In this study, we found that ribosomal protein s27a (RPS27a) regulates LMP1 stability by a tandem affinity purification analysis. RPS27a interacts directly with LMP1 in vitro and in vivo. Furthermore, overexpression of RPS27a increases the half-life of LMP1 in 293T cells, whereas downregulation of RPS27a using lentiviral shRNA technology accelerates the decrease in LMP1 protein level in EBV-transformed B cells. We show that LMP1 ubiquitination via the proteasome is completely inhibited by overexpression of RPS27a. RPS27a also enhances LMP1-mediated proliferation and invasion, suggesting that RPS27a interacts with LMP1 and stabilizes it by suppressing proteasome-mediated ubiquitination. These results suggest that RSP27a could be a potential target in EBV-infected LMP1-positive cancer cells.


Assuntos
Transformação Celular Neoplásica/genética , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Proteínas Ribossômicas/genética , Ubiquitinas/genética , Proteínas da Matriz Viral/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cães , Regulação da Expressão Gênica , Células HEK293 , Meia-Vida , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/metabolismo , Humanos , Células Madin Darby de Rim Canino , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Ubiquitinação , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/metabolismo , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA