Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 147(12): 2597-2614, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621143

RESUMO

Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Adsorção , Incrustação Biológica/prevenção & controle , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Propriedades de Superfície
2.
J Food Sci Technol ; 58(2): 581-585, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568851

RESUMO

Lignans are members of a broad group of plant phenols that can positively affect human health. They occur in negligible quantities in processed foodstuffs such as lager beer. The aim of this work was to utilize the high levels of lignans in the knots of spruce trees (Picea abies) to increase the lignans content in beer, without negatively impacting the natural taste and aroma. By means of lignans addition in the forms of spruce knot chips or different extracts made from spruce knots during the wort boiling were produced beer and beer-based beverages with lignans content ranging from 34 to 174 mg/L.

3.
Langmuir ; 36(29): 8485-8493, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32506911

RESUMO

Polymer brushes not only represent emerging surface platforms for numerous bioanalytical and biological applications but also create advanced surface-tethered systems to mimic real-life biological processes. In particular, zwitterionic and nonionic polymer brushes have been intensively studied because of their extraordinary resistance to nonspecific adsorption of biomolecules (antifouling characteristics) as well as the ability to be functionalized with bioactive molecules. However, the relation between antifouling behavior in real-world biological media and structural changes of polymer brushes induced by surface preconditioning in different environments remains unexplored. In this work, we use multiple methods to study the structural properties of numerous brushes under variable ionic concentrations and determine the impact of these changes on resistance to fouling from undiluted blood plasma. We describe different mechanisms of swelling, depending on both the polymer brush coating properties and the environmental conditions that affect changes in both hydration levels and thickness. Using both fluorescent and surface plasmon resonance methods, we found that the antifouling behavior of these brushes is strongly dependent on the aforementioned structural changes. Moreover, preconditioning of the brush coatings (incubation at a variable salt concentration or drying) prior to biomolecule interaction may significantly improve the antifouling performance. These results suggest a new simple approach to improve the antifouling behavior of polymer brushes. In addition, the results herein enhance the understanding for improved design of antifouling and bioresponsive brushes employed in biosensor and biomimetic applications.

4.
Anal Chem ; 89(6): 3524-3531, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28233990

RESUMO

Fouling from complex biological fluids such as blood plasma to biorecognition element (BRE)-functionalized coatings hampers the use of affinity biosensor technologies in medical diagnostics. Here, we report the effects the molecular mechanisms involved in functionalization of low-fouling carboxy-functional coatings have on the BRE capacity and resistance to fouling from blood plasma. The specific mechanisms of EDC/NHS activation of carboxy groups, BRE attachment, and deactivation of residual activated groups on recently developed ultra-low-fouling carboxybetaine polymer and copolymer brushes (pCB) as well as conventional carboxy-terminated oligo(ethylene glycol)-based alkanethiolate self-assembled monolayers (OEG-SAMs) are studied using the polarization modulation infrared reflection/absorption spectroscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance methods. It is shown that the fouling resistance of BRE-functionalized pCB coatings is strongly influenced by a deactivation method affecting the ultra-low-fouling molecular structure of the brush and surface charges. It is revealed that, in contrast to free carboxy-group-terminated OEG-SAMs, only a partial deactivation of EDC/NHS-activated zwitterionic carboxy groups by spontaneous hydrolysis is possible in the pCB brushes. The fouling resistance of activated/BRE-functionalized pCB is shown to be recovered only by covalent attachment of amino acid deactivation agents to residual activated carboxy groups of pCB. The developed deactivation procedure is further combined with ultra-low-fouling brushes of random copolymer carboxybetaine methacrylamide (CBMAA) and N-(2-hydroxypropyl) methacrylamide (HPMAA) with optimized CBMAA content (15%) providing a BRE-functionalized coating with superior fouling resistance over various carboxy-functional low-fouling coatings including homopolymer pCB brushes and OEG-SAMs. The biorecognition capabilities of pHPMAA-CBMAA(15%) are demonstrated via the sensitive label-free detection of a microRNA cancer biomarker (miR-16) in blood plasma.


Assuntos
Materiais Revestidos Biocompatíveis/metabolismo , Polímeros/metabolismo , Materiais Revestidos Biocompatíveis/química , Humanos , Estrutura Molecular , Espectroscopia Fotoeletrônica , Polímeros/síntese química , Polímeros/química
5.
Anal Chem ; 88(21): 10533-10539, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689386

RESUMO

Functional polymer coatings that combine the ability to resist nonspecific fouling from complex media with high biorecognition element (BRE) immobilization capacity represent an emerging class of new functional materials for a number of bioanalytical and biosensor technologies for medical diagnostics, security, and food safety. Here, we report on a random copolymer brush surface - poly(CBMAA-ran-HPMAA) - providing high BRE immobilization capacity while simultaneously exhibiting ultralow-fouling behavior in complex food media. We demonstrate that both the functionalization and fouling resistance capabilities of such copolymer brushes can be tuned by changing the surface contents of the two monomer units: nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) and carboxy-functional zwitterionic carboxybetaine methacrylamide (CBMAA). It is demonstrated that the resistance to fouling decreases with the surface content of CBMAA; poly(CBMAA-ran-HPMAA) brushes with CBMAA molar content up to 15 mol % maintain excellent resistance to fouling from a variety of homogenized foods (hamburger, cucumber, milk, and lettuce) even after covalent attachment of BREs to carboxy groups of CBMAA. The poly(CBMAA 15 mol %-ran-HPMAA) brushes functionalized with antibodies are demonstrated to exhibit fouling resistance from food samples by up to 3 orders of magnitude better when compared with the widely used low-fouling carboxy-functional oligo(ethylene glycol) (OEG)-based alkanethiolate self-assembled monolayers (AT SAMs) and, furthermore, by up to 2 orders of magnitude better when compared with the most successful ultralow-fouling biorecognition coatings - poly(carboxybetaine acrylamide), poly(CBAA). When model SPR detections of food-borne bacterial pathogens in homogenized foods are used, it is also demonstrated that the antibody-functionalized poly(CBMAA 15 mol %-ran-HPMAA) brush exhibits superior biorecognition properties over the poly(CBAA).


Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Incrustação Biológica/prevenção & controle , Inocuidade dos Alimentos/métodos , Resinas Acrílicas/síntese química , Anticorpos/química , Escherichia coli/imunologia , Alimentos , Ouro/química , Nanopartículas/química , Salmonella typhimurium/imunologia , Molhabilidade
6.
Int J Cancer ; 135(5): 1165-77, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24500981

RESUMO

Recent studies have identified molecular events characteristic of immunogenic cell death (ICD), including surface exposure of calreticulin (CRT), the heat shock proteins HSP70 and HSP90, the release of high-mobility group box protein 1 (HMGB1) and the release of ATP from dying cells. We investigated the potential of high hydrostatic pressure (HHP) to induce ICD in human tumor cells. HHP induced the rapid expression of HSP70, HSP90 and CRT on the cell surface. HHP also induced the release of HMGB1 and ATP. The interaction of dendritic cells (DCs) with HHP-treated tumor cells led to a more rapid rate of DC phagocytosis, upregulation of CD83, CD86 and HLA-DR and the release of interleukin IL-6, IL-12p70 and TNF-α. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor-specific T cells. DCs pulsed with HHP-treated tumor cells also induced the lowest number of regulatory T cells. In addition, we found that the key features of the endoplasmic reticulum stress-mediated apoptotic pathway, such as reactive oxygen species production, phosphorylation of the translation initiation factor eIF2α and activation of caspase-8, were activated by HHP treatment. Therefore, HHP acts as a reliable and potent inducer of ICD in human tumor cells.


Assuntos
Apoptose/imunologia , Células Dendríticas/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Trifosfato de Adenosina/metabolismo , Antígenos CD/biossíntese , Antígeno B7-2/biossíntese , Calreticulina/biossíntese , Calreticulina/imunologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/imunologia , Ativação Enzimática/imunologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Antígenos HLA-DR/biossíntese , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/imunologia , Humanos , Pressão Hidrostática , Imunoglobulinas/biossíntese , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas de Membrana/biossíntese , Fagocitose/imunologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antígeno CD83
8.
Blood ; 117(5): 1700-6, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21106983

RESUMO

Fibrinogen adsorption on a surface results in the modification of its functional characteristics. Our previous studies revealed that fibrinogen adsorbs onto surfaces essentially in 2 different orientations depending on its concentration in the solution: "side-on" at low concentrations and "end-on" at high concentrations. In the present study, we analyzed the thrombin-mediated release of fibrinopeptides A and B (FpA and FpB) from fibrinogen adsorbed in these orientations, as well as from surface-bound fibrinogen-fibrin complexes prepared by converting fibrinogen adsorbed in either orientation into fibrin and subsequently adding fibrinogen. The release of fibrinopeptides from surface-adsorbed fibrinogen and from surface-bound fibrinogen-fibrin complexes differed significantly compared with that from fibrinogen in solution. The release of FpB occurred without the delay (lag phase) characteristic of its release from fibrinogen in solution. The amount of FpB released from end-on adsorbed fibrinogen and from adsorbed fibrinogen-fibrin complexes was much higher than that of FpA. FpB is known as a potent chemoattractant, so its preferential release suggests a physiological purpose in the attraction of cells to the site of injury. The N-terminal portions of fibrin ß chains including residues Bß15-42, which are exposed after cleavage of FpB, have been implicated in many processes, including angiogenesis and inflammation.


Assuntos
Fibrina/metabolismo , Fibrinopeptídeo A/metabolismo , Fibrinopeptídeo B/metabolismo , Trombina/metabolismo , Fibrinogênio/metabolismo , Humanos , Cinética , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
9.
Langmuir ; 29(10): 3388-97, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23391268

RESUMO

The resistance of poly(ethylene glycol) (PEG) against protein adsorption is crucial and has been widely utilized in various biomedical applications. In this work, the complete protein composition of biofilms deposited on PEG-based surfaces from human blood plasma (BP) was identified for the first time using nanoLC-MS/MS, a powerful tool in protein analysis. The mass of deposited BP and the number of different proteins contained in the deposits on individual surfaces decreased in the order of self-assembling monolayers of oligo(ethylene glycol) alkanethiolates (SAM) > poly(ethylene glycol) end-grafted onto a SAM > poly(oligo(ethylene glycol) methacrylate) brushes prepared by surface initiated polymerization (poly(OEGMA)). The BP deposit on the poly(OEGMA) surface was composed only of apolipoprotein A-I, apolipoprotein B-100, complement C3, complement C4-A, complement C4-B, histidine-rich glycoprotein, Ig mu chain C region, fibrinogen (Fbg), and serum albumin (HSA). The total resistance of the surface to the Fbg and HSA adsorption from single protein solutions suggested that their deposition from BP was mediated by some of the other proteins. Current theories of protein resistance are not sufficient to explain the observed plasma fouling. The research focused on the identified proteins, and the experimental approach used in this work can provide the basis for the understanding and rational design of plasma-resistant surfaces.


Assuntos
Plasma/química , Polietilenoglicóis/química , Proteínas/química , Adsorção , Cromatografia Líquida , Humanos , Propriedades de Superfície , Espectrometria de Massas em Tandem
10.
Nutrients ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771424

RESUMO

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder with repetitive behaviour which affects interaction and communication. Sulforaphane (SFN), an isothiocyanate abundant in the seeds and sprouts of cruciferous vegetables, has been shown to be effective in alleviating autistic behaviour. We performed a prospective double-blind placebo-controlled study to examine the possible effect of SFN in a paediatric cohort aged three to seven years based on measurements of the Autism Diagnostic Observation Schedule-2 (ADOS-2), the Social Responsiveness Scale-2 (SRS-2), and the Aberrant Behaviour Checklist (ABC). The study consisted of three visits over the duration of 36 weeks (baseline, 18 weeks, and 36 weeks). Twenty-eight of the 40 randomized children completed the study. The mean total raw scores on ABC and SRS-2 improved in both groups, but none of the changes reached statistical significance (ABC: 0 weeks p = 0.2742, 18 weeks p = 0.4352, and 36 weeks 0.576; SRS-2: 0 weeks p = 0.5235, 18 weeks p = 0.9176, and 36 weeks 0.7435). Changes in the assessment of the ADOS-2 subscale scores also did not differ between the two study cohorts (ADOS-2: 0 weeks p = 0.8782, 18 weeks p = 0.4788, and 36 weeks 0.9414). We found no significant clinical improvement in the behavioural outcome measures evaluated in children with ASD aged 3-7 years that were treated with sulforaphane.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Criança , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Método Duplo-Cego , Estudos Prospectivos , Isotiocianatos/uso terapêutico
11.
Anal Chim Acta ; 1276: 341640, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573118

RESUMO

Ultrathin surface-tethered polymer brushes represent attractive platforms for a wide range of sensing applications in strategically vital areas such as medicine, forensics, or security. The recent trends in such developments towards "real world conditions" highlighted the role of zwitterionic poly(carboxybetaine) (pCB) brushes which provide excellent antifouling properties combined with bio-functionalization capacity. Highly dense pCB brushes are usually prepared by the "grafting from" polymerization triggered by initiators on self-assembled monolayers (SAMs). Here, multi-methodological experimental studies are pursued to elucidate the impact of the alkanethiolate SAM chain length (C6, C8 and C11) on structural and functional properties of antifouling poly(carboxybetaine methacrylamide) (pCBMAA) brush. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a custom-made 3D printed cell employing [Ru(NH3)6]3+/2+ redox probe were used to investigate penetrability of SAM/pCBMAA bilayers for small molecules and interfacial charge transfer characteristics. The biofouling resistance of pCBMAA brushes was characterized by surface plasmon resonance; ellipsometry and FT-IRRAS spectroscopy were used to determine swelling and relative density of the brushes synthesized from initiator-bearing SAMs with varied carbon chain length. The SAM length was found to have a substantial impact on all studied characteristics; the highest value of charge transfer resistance (Rct) was observed for denser pCBMAA on longer-chain (C11) SAM when compared to shorter (C8/C6) SAMs. The observed high value of Rct for C11 implies a limitation for the analytical performance of electrochemical sensing methods. At the same time, the pCBMAA brushes on C11 SAM exhibited the best bio-fouling resistance among inspected systems. This demonstrates that proper selection of supporting structures for brushes is critical in the design of these assemblies for biosensing applications.

12.
Int J Biol Macromol ; 253(Pt 4): 126898, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729990

RESUMO

The aim of our study was to describe the impact of collagen in the gel and dry state to various doses of electron beam radiation (1, 10 and 25 kGy) which are using for food processing and sterilization. The changes in the chemical compositions (water, amino acids, lipids, glycosaminoglycans) were analyzed and the changes in the structure (triple-helix or ß-sheet, the integrity of the collagen) were assessed. Subsequently, the impact of the applied doses on the mechanical properties, stability in the enzymatic environment, swelling and morphology were determined. The irradiated gels evinced enhanced degrees of cross-linking with only partial degradation. Nevertheless, an increase was observed in their stability manifested via a higher degree of resistance to the enzymatic environment, a reduction in swelling and, in terms of the mechanical behaviour, an approximation to the non-linear behavior of native tissues. In contrast, irradiation in the dry state exerted a somewhat negative impact on the observed properties and was manifested mainly via the scission of the collagen molecule and via a lower degree of stability in the aqueous and enzymatic environments. Neither the chemical composition nor the morphology was affected by irradiation.


Assuntos
Elétrons , Água , Colágeno , Géis , Raios gama
13.
Polymers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299271

RESUMO

The physical properties and structure of collagen treated with high-pressure technologies have not yet been investigated in detail. The main goal of this work was to determine whether this modern gentle technology significantly changes the properties of collagen. High pressure in the range of 0-400 MPa was used, and the rheological, mechanical, thermal, and structural properties of collagen were measured. The rheological properties measured in the area of linear viscoelasticity do not statistically significantly change due to the influence of pressure or the duration of pressure exposure. In addition, the mechanical properties measured by compression between two plates are not statistically significantly influenced by pressure value or pressure hold time. The thermal properties Ton and ∆H measured by differential calorimetry depend on pressure value and pressure hold time. Results from amino acids and FTIR analyses show that exposure of collagenous gels to high pressure (400 MPa), regardless of applied time (5 and 10 min), caused only minor changes in the primary and secondary structure and preserved collagenous polymeric integrity. SEM analysis did not show changes in collagen fibril ordering orientation over longer distances after applying 400 MPa of pressure for 10 min.

14.
Foods ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231674

RESUMO

Although Holder pasteurization is the recommended method for processing breast milk, it does affect some of its nutritional and biological properties and is ineffective at inactivating spores. The aim of this study was to find and validate an alternative methodology for processing breast milk to increase its availability for newborn babies and reduce the financial loss associated with discarding milk that has become microbiologically positive. We prepared two series of breast milk samples inoculated with the Bacillus cereus (B. cereus) strain to verify the effectiveness of two high-pressure treatments: (1) 350 MPa/5 min/38 °C in four cycles and (2) cumulative pressure of 350 MPa/20 min/38 °C. We found that the use of pressure in cycles was statistically more effective than cumulative pressure. It reduced the number of spores by three to four orders of magnitude. We verified that the method was reproducible. The routine use of this method could lead to an increased availability of milk for newborn babies, and at the same time, reduce the amount of wasted milk. In addition, high-pressure treatment preserves the nutritional quality of milk.

15.
J Travel Med ; 30(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37133444

RESUMO

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Aerossóis e Gotículas Respiratórios , Meios de Transporte , Pandemias/prevenção & controle
16.
Biomacromolecules ; 13(12): 4164-70, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23157270

RESUMO

Five poly(betaine) brushes were prepared, and their resistance to blood plasma fouling was studied. Two carboxybetaines monomers were copolymerized with 2-hydroxyethyl methacrylate (HEMA) to prepare novel hydrogels. By increasing the content of the zwitterionic comonomer, a 4-fold increase in the water content could be achieved while retaining mechanical properties close to the widely used poly(HEMA) hydrogels. All hydrogels showed an unprecedentedly low fouling from blood plasma. Remarkably, by copolymerization with 10 mol % of carboxybetaine acrylamide, hydrogels fully resistant to blood plasma were prepared.


Assuntos
Acrilamidas/síntese química , Hidrogéis/síntese química , Metacrilatos/síntese química , Betaína/química , Materiais Biocompatíveis/química , Humanos , Plasma/química , Polimerização , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Água/química
17.
Foods ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35206086

RESUMO

This Special Issue is focused on the use of modern food processing technologies to retain the highest possible content of health-promoting compounds in raw foods [...].

18.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35160567

RESUMO

This article describes 1D extension tests on bovine collagen samples (8% collagen in water). At such a high collagen concentration, the mechanical properties of semi-solid samples can be approximated by hyperelastic models (two-parametric HGO and Misof models were used), or simply by Hooke's law and the modulus of elasticity E. The experiments confirm a significant increase in the E-modulus of the samples irradiated with high-energy electrons. The modulus E ~ 9 kPa of non-irradiated samples increases monotonically up to E ~ 250 kPa for samples absorbing an e-beam dose of ~3300 Gy. This amplification is attributed to the formation of cross-links by irradiation. However, E-modulus can be increased not only by irradiation but also by exposure to a high strain rate. For example, soft isotropic collagen extruded through a 200 mm long capillary increases the modulus of elasticity from 9 kPa to 30 kPa, and the increase is almost isotropic. This stiffening occurs when the corrugated collagen fibers are straightened and are aligned in the flow direction. It seems that the permanent structural changes caused by extrusion mitigate the effects of the ex post applied irradiation. Irradiation of extruded samples by 3300 Gy increases the modulus of E-elasticity only three times (from 30 kPa to approximately 90 kPa). Extruded and ex post irradiated samples show slight anisotropy (the stiffness in the longitudinal direction is on an average greater than the transverse stiffness).

19.
Foods ; 11(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053954

RESUMO

High pressure processing (HPP) is a cold pasteurization technology by which products, prepacked in their final package, are introduced to a vessel and subjected to a high level of isostatic pressure (300-600 MPa). High-pressure treatment of fruit, vegetable and fresh herb homogenate products offers us nearly fresh products in regard to sensorial and nutritional quality of original raw materials, representing relatively stable and safe source of nutrients, vitamins, minerals and health effective components. Such components can play an important role as a preventive tool against the start of illnesses, namely in the elderly. An overview of several food HPP products, namely of fruit and vegetable origin, marketed successfully around the world is presented. Effects of HPP and HPP plus heat on key spoilage and pathogenic microorganisms, including the resistant spore form and fruit/vegetable endogenous enzymes are reviewed, including the effect on the product quality. Part of the paper is devoted to the industrial equipment available for factories manufacturing HPP treated products.

20.
Foods ; 11(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407124

RESUMO

Bacillus cereus is relatively resistant to pasteurization. We assessed the risk of B. cereus growth during warming and subsequent storage of pasteurized banked milk (PBM) in the warmed state using a predictive mathematical model. Holder pasteurization followed by storage below -18 °C was used. Temperature maps, water activity values, and B. cereus growth in artificially inoculated PBM were obtained during a simulation of manipulation of PBM after its release from a Human Milk Bank. As a real risk level, we chose a B. cereus concentration of 100 CFU/mL; the risk was assessed for three cases: 1. For an immediate post-pasteurization B. cereus concentration below 1 CFU/mL (level of detection); 2. For a B. cereus concentration of 10 CFU/mL, which is allowed in some countries; 3. For a B. cereus concentration of 50 CFU/mL, which is approved for milk formulas. In the first and second cases, no risk was detected after 1 h of storage in the warmed state, while after 2 h of storage, B. cereus concentrations of 102 CFU/mL were occasionally encountered. In the third case, exceeding the B. cereus concentration of 102 CFU/mL could be regularly expected after 2 h of storage. Based on these results, we recommend that post-pasteurization bacteriological analysis be performed as recommended by the European Milk Bank Association (EMBA) and using warmed PBM within 1 h after warming (no exceptions).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA