Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748907

RESUMO

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Diploide , Resistência à Doença/genética , Genes de Plantas , Haplótipos , Doenças das Plantas/genética , Puccinia
2.
Mol Ecol ; 30(24): 6566-6584, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34543497

RESUMO

Long-distance migration and host adaptation by transboundary plant pathogens often brings detrimental effects to important agroecosystems. Efficient surveillance as a basis for responding to the dynamics of such pathogens is often hampered by a lack of information on incursion origin, evolutionary pathways and the genetic basis of rapidly evolving virulence across larger timescales. Here, we studied these genetic features by using historical isolates of the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst), which causes one of the most widespread and devastating diseases, stripe (yellow) rust, of wheat. Through a combination of genotypic, phenotypic and genomic analyses, we assigned eight Pst isolates representing putative exotic Pst incursions into Australia to four previously defined genetic groups, PstS0, PstS1, PstS10 and PstS13. We showed that isolates of an additional incursion of P. striiformis, known locally as P. striiformis f. sp. pseudo-hordei, had a new and unique multilocus SSR genotype (MLG). We provide results of overall genomic variation of representative Pst isolates from each genetic group by comparative genomic analyses. We showed that isolates within the PstS1 and PstS13 genetic groups are most distinct at the whole-genome variant level from isolates belonging to genetic group PstS0, whereas the isolate from the PstS10 genetic group is intermediate. We further explored variable gene content, including putative effectors, representing both shared but also unique genetic changes that have occurred following introduction, some of which may additionally account for local adaptation of these isolates to triticale. Our genotypic and genomic data revealed new genetic insights into the evolution of diverse phenotypes of rust pathogens following incursion into a geographically isolated continental region.


Assuntos
Basidiomycota , Doenças das Plantas , Basidiomycota/genética , Genótipo , Puccinia , Virulência/genética
3.
BMC Biol ; 17(1): 65, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31405370

RESUMO

BACKGROUND: Effective disease management depends on timely and accurate diagnosis to guide control measures. The capacity to distinguish between individuals in a pathogen population with specific properties such as fungicide resistance, toxin production and virulence profiles is often essential to inform disease management approaches. The genomics revolution has led to technologies that can rapidly produce high-resolution genotypic information to define individual variants of a pathogen species. However, their application to complex fungal pathogens has remained limited due to the frequent inability to culture these pathogens in the absence of their host and their large genome sizes. RESULTS: Here, we describe the development of Mobile And Real-time PLant disEase (MARPLE) diagnostics, a portable, genomics-based, point-of-care approach specifically tailored to identify individual strains of complex fungal plant pathogens. We used targeted sequencing to overcome limitations associated with the size of fungal genomes and their often obligately biotrophic nature. Focusing on the wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (Pst), we demonstrate that our approach can be used to rapidly define individual strains, assign strains to distinct genetic lineages that have been shown to correlate tightly with their virulence profiles and monitor genes of importance. CONCLUSIONS: MARPLE diagnostics enables rapid identification of individual pathogen strains and has the potential to monitor those with specific properties such as fungicide resistance directly from field-collected infected plant tissue in situ. Generating results within 48 h of field sampling, this new strategy has far-reaching implications for tracking plant health threats.


Assuntos
Basidiomycota/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Doenças das Plantas/microbiologia , Sistemas Automatizados de Assistência Junto ao Leito , Basidiomycota/classificação , Doenças das Plantas/classificação
4.
PLoS Pathog ; 10(1): e1003903, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465211

RESUMO

Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen.


Assuntos
Basidiomycota/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Humanos
5.
New Phytol ; 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27252028

RESUMO

We identified a wheat stripe rust (Puccinia striiformis) effector candidate (PEC6) with pattern-triggered immunity (PTI) suppression function and its corresponding host target. PEC6 compromised PTI host species-independently. In Nicotiana benthamiana, it hampers reactive oxygen species (ROS) accumulation and callose deposition induced by Pseudomonas fluorescens. In Arabidopsis, plants expressing PEC6 were more susceptible to Pseudomonas syringae pv. tomato (Pto) DC3000 ΔAvrPto/ΔAvrPtoB. In wheat, PEC6-suppression of P. fluorescens-elicited PTI was revealed by the fact that it allowed activation of effector-triggered immunity by Pto DC3000. Knocking down of PEC6 expression by virus-mediated host-induced gene silencing decreased the number of rust pustules, uncovering PEC6 as an important pathogenicity factor. PEC6, overexpressed in plant cells without its signal peptide, was localized to the nucleus and cytoplasm. A yeast two-hybrid assay showed that PEC6 interacts with both wheat and Arabidopsis adenosine kinases (ADKs). Knocking down wheat ADK expression by virus-induced gene silencing reduced leaf growth and enhanced the number of rust pustules, indicating that ADK is important in plant development and defence. ADK plays essential roles in regulating metabolism, cytokinin interconversion and methyl transfer reactions, and our data propose a model where PEC6 may affect one of these processes by targeting ADK to favour fungal growth.

6.
Phytopathology ; 106(7): 729-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27019064

RESUMO

Frequent emergence of new variants in the Puccinia graminis f. sp. tritici Ug99 race group in Kenya has made pathogen survey a priority. We analyzed 140 isolates from 78 P. graminis f. sp. tritici samples collected in Kenya between 2008 and 2014 and identified six races, including three not detected prior to 2013. Genotypic analysis of 20 isolates from 2013 and 2014 collections showed that the new races TTHST, TTKTK, and TTKTT belong to the Ug99 race group. International advanced breeding lines were evaluated against an isolate of TTKTT (Sr31, Sr24, and SrTmp virulence) at the seedling stage. From 169 advanced lines from Kenya, 23% of lines with resistance to races TTKSK and TTKST were susceptible to TTKTT and, from two North American regional nurseries, 44 and 91% of resistant lines were susceptible. Three lines with combined resistance genes were developed to facilitate pathogen monitoring and race identification. These results indicate the increasing virulence and variability in the Kenyan P. graminis f. sp. tritici population and reveal vulnerabilities of elite germplasm to new races.


Assuntos
Basidiomycota/patogenicidade , Triticum/microbiologia , Basidiomycota/genética , Técnicas de Genotipagem , Quênia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Virulência
7.
Plant Dis ; 100(6): 1064-1070, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682276

RESUMO

The fungus Puccinia striiformis causes yellow (stripe) rust on wheat worldwide. In the present article, new methods utilizing an engineered fluid (Novec 7100) as a carrier of urediniospores were compared with commonly used inoculation methods. In general, Novec 7100 facilitated a faster and more flexible application procedure for spray inoculation and it gave highly reproducible results for virulence phenotyping. Six point inoculation methods were compared to find the most suitable for assessment of pathogen aggressiveness. The use of Novec 7100 and dry dilution with Lycopodium spores gave an inoculation success rate of 100% in two independent trials, which was significantly higher and more consistent than for spore suspension in Soltrol 170, water, water + Tween 20, and Noble agar + Tween 20. Both Soltrol 170 and Novec 7100 allowed precise quantification of inoculum, which is important for the assessment of quantitative epidemiological parameters. New protocols for spray and point inoculation of P. striiformis on wheat are presented, along with the prospect for applying these in rust research and resistance breeding activities.

8.
Phytopathology ; 105(7): 872-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26120730

RESUMO

Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the 'Digalu' and 'Robin' varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes-Sr55, Sr56, Sr57, and Sr58-have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.


Assuntos
Basidiomycota/genética , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Evolução Biológica , Abastecimento de Alimentos , Genes de Plantas , Doenças das Plantas , Triticum/genética
9.
Phytopathology ; 105(7): 917-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25775107

RESUMO

A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014, with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal was used to identify which regions were most likely to have been infected from postulated sites of initial infection. Based on the analyses of 106 single-pustule isolates derived from these samples, four races of Puccinia graminis f. sp. tritici were identified: TKTTF, TTKSK, RRTTF, and JRCQC. Race TKTTF was found to be the primary cause of the epidemic in the southeastern zones of Bale and Arsi. Isolates of race TKTTF were first identified in samples collected in early October 2013 from West Arsi. It was the sole or predominant race in 31 samples collected from Bale and Arsi zones after the stem rust epidemic was established. Race TTKSK was recovered from 15 samples from Bale and Arsi zones at low frequencies. Genotyping indicated that isolates of race TKTTF belongs to a genetic lineage that is different from the Ug99 race group and is composed of two distinct genetic types. Results from evaluation of selected germplasm indicated that some cultivars and breeding lines resistant to the Ug99 race group are susceptible to race TKTTF. Appearance of race TKTTF and the ensuing epidemic underlines the continuing threats and challenges posed by stem rust not only in East Africa but also to wider-scale wheat production.


Assuntos
Basidiomycota/genética , Triticum/microbiologia , Etiópia , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/genética
10.
Fungal Genet Biol ; 70: 77-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042987

RESUMO

An isolate of the basidiomycete Puccinia striiformis, which causes yellow (stripe) rust on wheat, was selfed on the newly discovered alternate host, Berberis vulgaris. This allowed a study of the segregation of molecular markers and virulence in the progeny isolates, and of the development of fungal sexual structures and spore forms. Pycnia and aecia were obtained after inoculation of B. vulgaris with basidiospores resulting from germinating teliospores from infected wheat leaves. Subsequent inoculation of wheat with aeciospores from bulked aecia resulted in 16 progeny isolates of the S1 generation. Genotyping with 42 simple sequence repeat (SSR) markers confirmed a parental origin of progeny isolates. Of the 42 analyzed loci, 15 were heterozygous in the parental isolate and 14 revealed segregation in the progenies. This resulted in 11 new multilocus genotypes (MLGs), which confirmed segregation following sexual reproduction. Additionally, parental and progeny isolates were phenotyped using a genetic stock of wheat genotypes representing 21 resistance genes. All S1 progeny isolates had virulence for 14 out of 15 loci where the parental isolate was virulent. This was consistent with the hypothesis that virulence in plant pathogens is often recessive to avirulence, i.e., only expressed in a homozygous state. Furthermore, no segregation was observed for five out of six loci, for which the parental isolate had an avirulent phenotype. The results for one of the two segregating virulence/avirulence loci suggested that the parental isolate was heterozygous with Avr alleles resulting in different but clearly avirulent phenotypes. The other locus indicated that additional genes modifying the phenotypic expression of avirulence were involved.


Assuntos
Basidiomycota/genética , Berberis/microbiologia , Recombinação Genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Genótipo , Repetições de Microssatélites , Esporos Fúngicos , Virulência
11.
Mol Ecol ; 23(3): 603-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24354737

RESUMO

Understanding the mode of temporal maintenance of plant pathogens is an important domain of microbial ecology research. Due to the inconspicuous nature of microbes, their temporal maintenance cannot be studied directly through tracking individuals and their progeny. Here, we suggest a series of population genetic analyses on molecular marker variation in temporally spaced samples to infer about the relative contribution of sexual reproduction, off-season survival and migration to the temporal maintenance of pathogen populations. We used the proposed approach to investigate the temporal maintenance of wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (PST), in the Himalayan region of Pakistan. Multilocus microsatellite genotyping of PST isolates revealed high genotypic diversity and recombinant population structure across all locations, confirming the existence of sexual reproduction in this region. The genotypes were assigned to four genetic groups, revealing a clear differentiation between zones with and without Berberis spp., the alternate host of PST, with an additional subdivision within the Berberis zone. The lack of any differentiation between samples across two sampling years, and the very infrequent resampling of multilocus genotypes over years at a given location was consistent with limited over-year clonal survival, and a limited genetic drift. The off-season oversummering population in the Berberis zone, likely to be maintained locally, served as a source of migrants contributing to the temporal maintenance in the non-Berberis zone. Our study hence demonstrated the contribution of both sexual recombination and off-season oversummering survival to the temporal maintenance of the pathogen. These new insights into the population biology of PST highlight the general usefulness of the analytical approach proposed.


Assuntos
Basidiomycota/genética , Genética Populacional , Doenças das Plantas/microbiologia , Triticum/microbiologia , Teorema de Bayes , Berberis/microbiologia , Análise por Conglomerados , DNA Fúngico/genética , Variação Genética , Genótipo , Repetições de Microssatélites , Tipagem de Sequências Multilocus , Paquistão , Densidade Demográfica , Estações do Ano , Análise de Sequência de DNA
12.
Phytopathology ; 104(10): 1042-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24624957

RESUMO

Resistance to Puccinia striiformis was examined in nine wheat recombinant inbred lines (RILs) from a cross between 'Camp Rémy' (resistant parent) and 'Récital' (susceptible parent) using an isolate of a strain common to the northwestern European population before 2011 (old) and two additional isolates, one representing an aggressive and high-temperature-adapted strain (PstS2) and another representing a virulence phenotype new to Europe since 2011 (new). The RILs carried different combinations of quantitative trait loci (QTL) for resistance to P. striiformis. Under greenhouse conditions, the three isolates gave highly contrasting results for infection type, latent period, lesion length, and diseased leaf area. The PstS2 isolate revealed Yr genes and QTL which conferred complete resistance in adult plants. Six QTL had additive effects against the old isolate whereas the effects of these QTL were significantly lower for the new isolate. Furthermore, the new isolate revealed previously undetected resistance in the susceptible parent. Disease severity under field conditions agreed with greenhouse results, except for Camp Rémy being fully resistant to the new isolate and for two RILs being susceptible in the field. These results stress the need of maintaining high genetic diversity for disease resistance in wheat and of using pathogen isolates of diverse origin in studies of host resistance genetics.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Variação Genética , Doenças das Plantas/imunologia , Triticum/genética , Basidiomycota/isolamento & purificação , Europa (Continente) , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Sensibilidade e Especificidade , Triticum/imunologia , Triticum/microbiologia , Virulência
13.
Curr Opin Microbiol ; 71: 102243, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462410

RESUMO

Long-distance dispersal of plant pathogens at the continental scale may have strong implications on plant health, in particular when incursions result in spread of disease to new territories where the disease was previously absent or insignificant. These dispersions may be caused by airborne transmission of spores or accidental spread via human travel and trade. Recent surveillance efforts of cereal rust fungi have demonstrated that incursion of new strains with superior fitness into areas where the disease is already established may have similar implications on plant health. Since dispersal events are highly stochastic, irrespective of transmission mechanism, critical mitigation efforts include preparedness by coordinated pathogen surveillance activities, host crop diversification, and breeding for disease resistance with low vulnerability to sudden changes in the pathogen population.


Assuntos
Basidiomycota , Doenças das Plantas , Humanos , Doenças das Plantas/microbiologia , Basidiomycota/genética , Plantas , Fungos/genética
14.
Front Plant Sci ; 14: 1322406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293628

RESUMO

The comeback of wheat stem rust in Europe, caused by Puccinia graminis f. sp. tritici, and the prevalence of the alternate (sexual) host in local areas have recently regained attention as a potential threat to European wheat production. The aim of this study was to investigate a potential epidemiological link between the aecia found on an indigenous barberry species and stem rust infections on nearby cereals and grasses. Aecial infections collected from Berberis vulgaris subsp. seroi were inoculated on a panel of susceptible genotypes of major cereal crop species. In total, 67 stem rust progeny isolates were recovered from wheat (51), barley (7), and rye (9), but none from oat, indicating the potential of barberry derived isolates to infect multiple cereals. Molecular genotyping of the progeny isolates and 20 cereal and grass stem rust samples collected at the same locations and year, revealed a clear genetic relatedness between the progeny isolated from barberry and the stem rust infections found on nearby cereal and grass hosts. Analysis of Molecular Variance indicated that variation between the stem rust populations accounted for only 1%. A Principal Components Analysis using the 62 detected multilocus genotypes also demonstrated a low degree of genetic variation among isolates belonging to the two stem rust populations. Lastly, pairwise comparisons based on fixation index (Fst), Nei's genetic distances and number of effective migrants (Nm) revealed low genetic differentiation and high genetic exchange between the two populations. Our results demonstrated a direct epidemiological link and functionality of an indigenous barberry species as the sexual host of P. graminis in Spain, a factor that should be considered when designing future strategies to prevent stem rust in Europe and beyond.

15.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771636

RESUMO

Climate changes over the past 25 years have led to conducive conditions for invasive and transboundary fungal disease occurrence, including the re-emergence of wheat stem rust disease, caused by Puccinia graminis f.sp. tritici (Pgt) in East Africa, Europe, and the Mediterranean basin. Since 2018, sporadic infections have been observed in Tunisia. In this study, we investigated Pgt occurrence at major Tunisian wheat growing areas. Pgt monitoring, assessment, and sampling from planted trap nurseries at five different locations over two years (2021 and 2022) revealed the predominance of three races, namely TTRTF (Clade III-B), TKKTF (Clade IV-F), and TKTTF (Clade IV-B). Clade III-B was the most prevalent in 2021 as it was detected at all locations, while in 2022 Pgt was only reported at Beja and Jendouba, with the prevalence of Clade IV-B. The low levels of disease incidence during these two years and Pgt population diversity suggest that this fungus most likely originated from exotic incursions and that climate factors could have caused disease establishment in Tunisia. Further evaluation under the artificial disease pressure of Tunisian wheat varieties and weather-based modeling for early disease detection in the Mediterranean area could be helpful in monitoring and predicting wheat stem rust emergence and epidemics.

16.
Mycologia ; 104(6): 1381-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802391

RESUMO

Differentiation of haustoria on primary infection hyphae of the fungal pathogen Puccinia striiformis was studied in wheat seedlings with two-photon microscopy in combination with a classical staining technique. Our results showed a significant increase in the average haustorium size 22, 44, 68, 92 and 116 h after inoculation (hai). After 116 hai no significant change was observed until 336 hai. Haustorium morphology also changed significantly during the time of infection. Initially small spherical haustoria were seen, but as they grew the haustoria gradually became apically branched. At 22 hai all observed haustoria were spherical, but at 44 hai most haustoria had an irregular structure, and at 92 hai all observed haustoria appeared branched. Along with the changes of the haustorial body the haustorial neck changed from narrow and slender to having an expanded appearance with a rough and invaginated structure. The structural changes were similar in two susceptible wheat varieties, 514W and Cartago, although the mean haustorium size was larger in 514W than in Cartago at all intervals.


Assuntos
Basidiomycota/citologia , Basidiomycota/crescimento & desenvolvimento , Imageamento Tridimensional/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota/classificação , Basidiomycota/fisiologia , Benzenossulfonatos , Interações Hospedeiro-Patógeno , Hifas/classificação , Hifas/citologia , Hifas/crescimento & desenvolvimento , Microscopia de Fluorescência , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Plântula/microbiologia , Esporos Fúngicos/classificação , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento
17.
Cells ; 11(8)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35455953

RESUMO

The majority of released rye cultivars are susceptible to leaf rust because of a low level of resistance in the predominant hybrid rye-breeding gene pools Petkus and Carsten. To discover new sources of leaf rust resistance, we phenotyped a diverse panel of inbred lines from the less prevalent Gülzow germplasm using six distinct isolates of Puccinia recondita f. sp. secalis and found that 55 out of 92 lines were resistant to all isolates. By performing a genome-wide association study using 261,406 informative SNP markers, we identified five resistance-associated QTLs on chromosome arms 1RS, 1RL, 2RL, 5RL and 7RS. To identify candidate Puccinia recondita (Pr) resistance genes in these QTLs, we sequenced the rye nucleotide-binding leucine-rich repeat (NLR) intracellular immune receptor complement using a Triticeae NLR bait-library and PacBio® long-read single-molecule high-fidelity (HiFi) sequencing. Trait-genotype correlations across 10 resistant and 10 susceptible lines identified four candidate NLR-encoding Pr genes. One of these physically co-localized with molecular markers delimiting Pr3 on chromosome arm 1RS and the top-most resistance-associated QTL in the panel.


Assuntos
Basidiomycota , Secale , Basidiomycota/genética , Resistência à Doença/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Puccinia , Secale/genética
18.
Plant Pathol ; 71(5): 1174-1184, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35915821

RESUMO

Stem rust, caused by Puccinia graminis, is a destructive group of diseases. The pathogen uses Berberis species as alternate hosts to complete its life cycle. B. vulgaris and the endemic species B. hispanica and B. garciae are present in Spain. The objective of this study was to investigate the functionality of the indigenous barberry as alternate hosts. Field surveys were conducted in 2018 and 2019 in Huesca, Teruel and Albacete provinces of Spain. Aecial samples on barberry were analysed via infection assays and DNA analysis. B. garciae was predominant in Huesca and Teruel provinces, often found in the field margins of cereal crops. Aecial infections on B. garciae were observed in May and uredinial infections on cereal crops in June. Scattered B. hispanica bushes were occasionally found near cereal crops in Albacete, where aecial infections on B. hispanica were observed in June when most cereal crops were mature. Infection assays using aeciospores resulted in stem rust infections on susceptible genotypes of wheat, barley, rye and oat, indicating the presence of the sexual cycle for P. graminis f. sp. tritici, f. sp. secalis and f. sp. avenae. Sequence analyses from aecial samples supported this finding as well as the presence of Puccinia brachypodii. This study provides the first evidence that indigenous Berberis species play an active role in the sexual cycle of P. graminis under natural conditions in Spain.

19.
Front Plant Sci ; 13: 882440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720526

RESUMO

The objective of this study was to investigate the re-emergence of a previously important crop pathogen in Europe, Puccinia graminis f.sp. tritici, causing wheat stem rust. The pathogen has been insignificant in Europe for more than 60 years, but since 2016 it has caused epidemics on both durum wheat and bread wheat in local areas in southern Europe, and additional outbreaks in Central- and West Europe. The prevalence of three distinct genotypes/races in many areas, Clade III-B (TTRTF), Clade IV-B (TKTTF) and Clade IV-F (TKKTF), suggested clonal reproduction and evolution by mutation within these. None of these genetic groups and races, which likely originated from exotic incursions, were detected in Europe prior to 2016. A fourth genetic group, Clade VIII, detected in Germany (2013), was observed in several years in Central- and East Europe. Tests of representative European wheat varieties with prevalent races revealed high level of susceptibility. In contrast, high diversity with respect to virulence and Simple Sequence Repeat (SSR) markers were detected in local populations on cereals and grasses in proximity to Berberis species in Spain and Sweden, indicating that the alternate host may return as functional component of the epidemiology of wheat stem rust in Europe. A geographically distant population from Omsk and Novosibirsk in western Siberia (Russia) also revealed high genetic diversity, but clearly different from current European populations. The presence of Sr31-virulence in multiple and highly diverse races in local populations in Spain and Siberia stress that virulence may emerge independently when large geographical areas and time spans are considered and that Sr31-virulence is not unique to Ug99. All isolates of the Spanish populations, collected from wheat, rye and grass species, were succesfully recovered on wheat, which underline the plasticity of host barriers within P. graminis. The study demonstrated successful alignment of two genotyping approaches and race phenotyping methodologies employed by different laboratories, which also allowed us to line up with previous European and international studies of wheat stem rust. Our results suggest new initiatives within disease surveillance, epidemiological research and resistance breeding to meet current and future challenges by wheat stem rust in Europe and beyond.

20.
Front Genet ; 13: 988031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246643

RESUMO

The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA