Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2210745120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989307

RESUMO

Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.


Assuntos
Células-Tronco Mesenquimais , Proteômica , Humanos , Envelhecimento , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Biossíntese de Proteínas , Células-Tronco Mesenquimais/metabolismo
2.
Nucleic Acids Res ; 51(16): 8820-8835, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37449412

RESUMO

Translation initiation factor 4G (eIF4G) is an integral component of the eIF4F complex which is key to translation initiation for most eukaryotic mRNAs. Many eIF4G isoforms have been described in diverse eukaryotic organisms but we currently have a poor understanding of their functional roles and whether they regulate translation in an mRNA specific manner. The yeast Saccharomyces cerevisiae expresses two eIF4G isoforms, eIF4G1 and eIF4G2, that have previously been considered as functionally redundant with any phenotypic differences arising due to alteration in eIF4G expression levels. Using homogenic strains that express eIF4G1 or eIF4G2 as the sole eIF4G isoforms at comparable expression levels to total eIF4G, we show that eIF4G1 is specifically required to mediate the translational response to oxidative stress. eIF4G1 binds the mRNA cap and remains associated with actively translating ribosomes during oxidative stress conditions and we use quantitative proteomics to show that eIF4G1 promotes oxidative stress-specific proteome changes. eIF4G1, but not eIF4G2, binds the Slf1 LARP protein which appears to mediate the eIF4G1-dependent translational response to oxidative stress. We show similar isoform specific roles for eIF4G in human cells suggesting convergent evolution of multiple eIF4G isoforms offers significant advantages especially where translation must continue under stress conditions.


Assuntos
Fator de Iniciação Eucariótico 4G , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas , Proteínas de Transporte/genética , Isoformas de Proteínas/metabolismo , Estresse Oxidativo/genética
3.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38651221

RESUMO

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Assuntos
Ananas , Genoma de Planta , Proteínas de Plantas , Proteogenômica , Espectrometria de Massas em Tandem , Ananas/genética , Ananas/química , Proteogenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromatografia Líquida , Proteoma/genética , Proteoma/análise , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/química , Peptídeos/genética , Peptídeos/análise , Peptídeos/química
4.
J Biol Chem ; 299(10): 105195, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633333

RESUMO

The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.

5.
J Proteome Res ; 22(2): 594-604, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36688735

RESUMO

Protein quantitation via mass spectrometry relies on peptide proxies for the parent protein from which abundances are estimated. Owing to the variability in signal from individual peptides, accurate absolute quantitation usually relies on the addition of an external standard. Typically, this involves stable isotope-labeled peptides, delivered singly or as a concatenated recombinant protein. Consequently, the selection of the most appropriate surrogate peptides and the attendant design in recombinant proteins termed QconCATs are challenges for proteome science. QconCATs can now be built in a "a-la-carte" assembly method using synthetic biology: ALACATs. To assist their design, we present "AlacatDesigner", a tool that supports the peptide selection for recombinant protein standards based on the user's target protein. The user-customizable tool considers existing databases, occurrence in the literature, potential post-translational modifications, predicted miscleavage, predicted divergence of the peptide and protein quantifications, and ionization potential within the mass spectrometer. We show that peptide selections are enriched for good proteotypic and quantotypic candidates compared to empirical data. The software is freely available to use either via a web interface AlacatDesigner, downloaded as a Desktop application or imported as a Python package for the command line interface or in scripts.


Assuntos
Peptídeos , Software , Peptídeos/química , Espectrometria de Massas , Proteoma/metabolismo , Proteínas Recombinantes
6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430179

RESUMO

Mitochondrial i-AAA proteinase Yme1 is a multifunctional protein that plays important roles in maintaining mitochondrial protein homeostasis and regulating biogenesis and function of mitochondrial proteins. However, due to the complex interplay of mitochondria and the multifunctional nature of Yme1, how Yme1 affects mitochondrial function and protein homeostasis is still poorly understood. In this study, we investigated how YME1 deletion affects yeast Saccharomyces cerevisiae growth, chronological life span, mitochondrial protein homeostasis and function, with a focus on the mitochondrial oxidative phosphorylation (OXPHOS) complexes. Our results show that whilst the YME1 deleted cells grow poorly under respiratory conditions, they grow similar to wild-type yeast under fermentative conditions. However, the chronological life span is impaired, indicating that Yme1 plays a key role in longevity. Using highly enriched mitochondrial extract and proteomic analysis, we show that the abundances of many mitochondrial proteins are altered by YME1 deletion. Several components of the respiratory chain complexes II, III, IV and V were significantly decreased, suggesting that Yme1 plays an important role in maintaining the level and function of complexes II-V. This result was confirmed using blue native-PAGE and in-solution-based enzyme activity assays. Taken together, this study shows that Yme1 plays an important role in the chronological life span and mitochondrial protein homeostasis and has deciphered its function in maintaining the activity of mitochondrial OXPHOS complexes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteases Dependentes de ATP/metabolismo , Proteômica , Adenosina Trifosfatases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
7.
Hum Mol Genet ; 28(22): 3704-3723, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304552

RESUMO

The craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.


Assuntos
Disostose Mandibulofacial/genética , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Sistemas CRISPR-Cas , Proliferação de Células/genética , Anormalidades Craniofaciais/genética , Estresse do Retículo Endoplasmático/genética , Éxons , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Haploinsuficiência/genética , Humanos , Íntrons , Mutação , Fatores de Alongamento de Peptídeos/metabolismo , Fenótipo , Precursores de RNA/metabolismo , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de RNA/métodos , Spliceossomos/genética
8.
RNA Biol ; 18(sup2): 655-673, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672913

RESUMO

Non-membrane-bound compartments such as P-bodies (PBs) and stress granules (SGs) play important roles in the regulation of gene expression following environmental stresses. We have systematically and quantitatively determined the protein and mRNA composition of PBs and SGs formed before and after nutrient stress. We find that high molecular weight (HMW) complexes exist prior to glucose depletion that we propose may act as seeds for further condensation of proteins forming mature PBs and SGs. We identify an enrichment of proteins with low complexity and RNA binding domains, as well as long, structured mRNAs that are poorly translated following nutrient stress. Many proteins and mRNAs are shared between PBs and SGs including several multivalent RNA binding proteins that promote condensate interactions during liquid-liquid phase separation. We uncover numerous common protein and RNA components across PBs and SGs that support a complex interaction profile during the maturation of these biological condensates. These interaction networks represent a tuneable response to stress, highlighting previously unrecognized condensate heterogeneity. These studies therefore provide an integrated and quantitative understanding of the dynamic nature of key biological condensates.


Assuntos
Genômica , Corpos de Processamento/metabolismo , Proteômica , Grânulos de Estresse/metabolismo , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genômica/métodos , Glucose/metabolismo , Humanos , Proteoma , Proteômica/métodos , Leveduras/fisiologia
9.
Biochem J ; 476(7): 1053-1082, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30885983

RESUMO

Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.


Assuntos
Glicólise , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/genética , Redes e Vias Metabólicas , Modelos Biológicos , Via de Pentose Fosfato/genética , Mutação Puntual , Proteoma/genética , Proteoma/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética
10.
Biochem Soc Trans ; 46(6): 1529-1539, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30420413

RESUMO

The regulation of translation is critical in almost every aspect of gene expression. Nonetheless, the ribosome is historically viewed as a passive player in this process. However, evidence is accumulating to suggest that variations in the ribosome can have an important influence on which mRNAs are translated. Scope for variation is provided via multiple avenues, including heterogeneity at the level of both ribosomal proteins and ribosomal RNAs and their covalent modifications. Together, these variations provide the potential for hundreds, if not thousands, of flavours of ribosome, each of which could have idiosyncratic preferences for the translation of certain messenger RNAs. Indeed, perturbations to this heterogeneity appear to affect specific subsets of transcripts and manifest as cell-type-specific diseases. This review provides a historical perspective of the ribosomal code hypothesis, before outlining the various sources of heterogeneity, their regulation and functional consequences for the cell.


Assuntos
RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Animais , Expressão Gênica/genética , Expressão Gênica/fisiologia , Humanos
11.
Mol Cell Proteomics ; 15(4): 1309-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26750110

RESUMO

Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800Saccharomyces cerevisiaeproteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a "gold-standard" reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica/métodos , Marcação por Isótopo , Modelos Lineares , Espectrometria de Massas/normas , Proteômica/normas , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de RNA/métodos
12.
PLoS Genet ; 11(1): e1004903, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569619

RESUMO

The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p 'closed loop' complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control.


Assuntos
Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas de Ligação a RNA/biossíntese , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Análise de Sequência de RNA
13.
PLoS Genet ; 11(5): e1005233, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973932

RESUMO

Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5'cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3' UTR motif. Caf20p binds all tested motif-containing 3' UTRs. Caf20p and the 3'UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3'UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E.


Assuntos
Repressão Epigenética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Regulação para Baixo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Imunoprecipitação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fases de Leitura Aberta , Ligação Proteica , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética
14.
Proteomics ; 16(15-16): 2128-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27252046

RESUMO

Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level.


Assuntos
Resposta ao Choque Térmico/fisiologia , Proteínas de Choque Térmico/análise , Chaperonas Moleculares/análise , Proteoma/análise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise
15.
J Proteome Res ; 15(9): 2945-59, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27454336

RESUMO

Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.


Assuntos
Proteínas Fúngicas/análise , Proteoma/análise , Proteômica/métodos , Calibragem , Fator F/normas , Interações Hidrofóbicas e Hidrofílicas , Proteômica/normas , Leveduras/química
16.
Nucleic Acids Res ; 42(2): 1026-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163252

RESUMO

In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the RNA-binding protein Puf3p, a known regulator of cellular mRNAs encoding proteins targeted to mitochondria. Under oxidative stress, a PUF3 deleted strain exhibits more robust growth than wild-type cells and the shift in translation from polysomes to monosomes is attenuated, suggesting puf3Δ cells perceive less stress. In agreement, the ratio of reduced:oxidized glutathione, a major antioxidant and indicator of cellular redox state, is increased in unstressed puf3Δ cells but remains lower under stress. In untreated conditions, Puf3p migrates with polysomes rather than ribosome-free fractions, but this is lost under stress. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) of Puf3p targets following affinity purification shows Puf3p-mRNA associations are maintained or increased under oxidative stress. Collectively, these results point to Puf3p acting as a translational repressor in a manner exceeding the global translational response, possibly by temporarily limiting synthesis of new mitochondrial proteins as cells adapt to the stress.


Assuntos
Regulação Fúngica da Expressão Gênica , Estresse Oxidativo/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Glutationa/metabolismo , Oxirredução , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Proteomics ; 15(5-6): 950-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25475148

RESUMO

Analysis of the phosphoproteome by MS has become a key technology for the characterization of dynamic regulatory processes in the cell, since kinase and phosphatase action underlie many major biological functions. However, the addition of a phosphate group to a suitable side chain often confounds informatic analysis by generating product ion spectra that are more difficult to interpret (and consequently identify) relative to unmodified peptides. Collectively, these challenges have motivated bioinformaticians to create novel software tools and pipelines to assist in the identification of phosphopeptides in proteomic mixtures, and help pinpoint or "localize" the most likely site of modification in cases where there is ambiguity. Here we review the challenges to be met and the informatics solutions available to address them for phosphoproteomic analysis, as well as highlighting the difficulties associated with using them and the implications for data standards.


Assuntos
Fosfopeptídeos/análise , Fosfoproteínas/análise , Proteômica
18.
Proteomics ; 15(18): 3126-39, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25689132

RESUMO

Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC-based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs.


Assuntos
Adenosina Trifosfatases/genética , Deleção de Genes , Proteínas de Choque Térmico HSP70/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Marcação por Isótopo , Mutação , Mapas de Interação de Proteínas , Proteômica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell Proteomics ; 11(7): M111.014381, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22375074

RESUMO

We report the release of mzIdentML, an exchange standard for peptide and protein identification data, designed by the Proteomics Standards Initiative. The format was developed by the Proteomics Standards Initiative in collaboration with instrument and software vendors, and the developers of the major open-source projects in proteomics. Software implementations have been developed to enable conversion from most popular proprietary and open-source formats, and mzIdentML will soon be supported by the major public repositories. These developments enable proteomics scientists to start working with the standard for exchanging and publishing data sets in support of publications and they provide a stable platform for bioinformatics groups and commercial software vendors to work with a single file format for identification data.


Assuntos
Espectrometria de Massas/normas , Proteínas/análise , Proteômica/normas , Software , Bases de Dados de Proteínas , Internet , Espectrometria de Massas/métodos , Proteômica/métodos
20.
Trends Cell Biol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423854

RESUMO

Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA