Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Radiol ; 32(11): 7976-7987, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35394186

RESUMO

OBJECTIVES: To develop and evaluate a deep learning-based algorithm (DLA) for automatic detection of bone metastases on CT. METHODS: This retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance. RESULTS: A total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004). CONCLUSION: With the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time. KEY POINTS: • A deep learning-based algorithm for automatic detection of bone metastases on CT was developed. • In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm. • Radiologists' interpretation time decreased at the same time.


Assuntos
Neoplasias Ósseas , Aprendizado Profundo , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Algoritmos , Tomografia Computadorizada por Raios X , Radiologistas , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário
2.
Eur Radiol ; 29(12): 6439-6442, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31273458

RESUMO

OBJECTIVE: Temporal subtraction of CT (TS) images improves detection of newly developed bone metastases (BM). We sought to determine whether TS improves detection of BM by radiology residents as well. METHODS: We performed an observer study using a previously reported dataset, consisting of 60 oncology patients, each with previous and current CT images. TS images were calculated using in-house software. Four residents independently interpreted twice the 60 sets of CT images, without and with TS. They identified BM by marking suspicious lesions likely to be BM. Lesion-based sensitivity and number of false positives per patient were calculated. Figure-of-merit (FOM) was calculated. Detectability of BM, with and without TS, was compared between radiology residents and board-certified radiologists, as published previously. RESULTS: FOM of residents significantly improved by implementing TS (p value < 0.0001). Lesion-based sensitivity, false positives per patients, and FOM were 40.8%, 0.121, and 0.657, respectively, without TS, and 58.1%, 0.0958, and 0.796, respectively, with TS. These findings were comparable with the previously published values for board-certified radiologists without TS (58.0%, 0.19, and 0.758, respectively). CONCLUSION: The detectability of BM by residents improved markedly by implementing TS and reached that of board-certified radiologists without TS. KEY POINTS: • Detectability of bone metastases on CT by residents improved significantly when using temporal subtraction of CT (TS). • Detections by residents with TS and board-certified radiologists without TS were comparable. • TS is useful for residents as it is for board-certified radiologists.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Competência Clínica/estatística & dados numéricos , Interpretação de Imagem Assistida por Computador/métodos , Radiologia/educação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Internato e Residência , Sensibilidade e Especificidade , Técnica de Subtração
3.
Eur Radiol ; 29(10): 5673-5681, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30888486

RESUMO

OBJECTIVES: To compare observer performance of detecting bone metastases between bone scintigraphy, including planar scan and single-photon emission computed tomography, and computed tomography (CT) temporal subtraction (TS). METHODS: Data on 60 patients with cancer who had undergone CT (previous and current) and bone scintigraphy were collected. Previous CT images were registered to the current ones by large deformation diffeomorphic metric mapping; the registered previous images were subtracted from the current ones to produce TS. Definitive diagnosis of bone metastases was determined by consensus between two radiologists. Twelve readers independently interpreted the following pairs of examinations: NM-pair, previous and current CTs and bone scintigraphy, and TS-pair, previous and current CTs and TS. The readers assigned likelihood levels to suspected bone metastases for diagnosis. Sensitivity, number of false positives per patient (FPP), and reading time for each pair of examinations were analysed for evaluating observer performance by performing the Wilcoxon signed-rank test. Figure-of-merit (FOM) was calculated using jackknife alternative free-response receiver operating characteristic analysis. RESULTS: The sensitivity of TS was significantly higher than that of bone scintigraphy (54.3% vs. 41.3%, p = 0.006). FPP with TS was significantly higher than that with bone scintigraphy (0.189 vs. 0.0722, p = 0.003). FOM of TS tended to be better than that of bone scintigraphy (0.742 vs. 0.691, p = 0.070). CONCLUSION: Sensitivity of TS in detecting bone metastasis was significantly higher than that of bone scintigraphy, but still limited to 54%. TS might be superior to bone scintigraphy for early detection of bone metastasis. KEY POINTS: • Computed tomography temporal subtraction was helpful in early detection of bone metastases. • Sensitivity for bone metastasis was higher for computed tomography temporal subtraction than for bone scintigraphy. • Figure-of-merit of computed tomography temporal subtraction was better than that of bone scintigraphy.


Assuntos
Neoplasias Ósseas/diagnóstico , Detecção Precoce de Câncer/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/secundário , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Curva ROC
4.
Eur Radiol ; 29(2): 759-769, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30062525

RESUMO

OBJECTIVE: To assess whether temporal subtraction (TS) images of brain CT improve the detection of suspected brain infarctions. METHODS: Study protocols were approved by our institutional review board, and informed consent was waived because of the retrospective nature of this study. Forty-two sets of brain CT images of 41 patients, each consisting of a pair of brain CT images scanned at two time points (previous and current) between January 2011 and November 2016, were collected for an observer performance study. The 42 sets consisted of 23 cases with a total of 77 newly developed brain infarcts or hyperdense artery signs confirmed by two radiologists who referred to additional clinical information and 19 negative control cases. To create TS images, the previous images were registered to the current images by partly using a non-rigid registration algorithm and then subtracted. Fourteen radiologists independently interpreted the images to identify the lesions with and without TS images with an interval of over 4 weeks. A figure of merit (FOM) was calculated along with the jackknife alternative free-response receiver-operating characteristic analysis. Sensitivity, number of false positives per case (FPC) and reading time were analyzed by the Wilcoxon signed-rank test. RESULTS: The mean FOM increased from 0.528 to 0.737 with TS images (p < 0.0001). The mean sensitivity and FPC improved from 26.5% and 0.243 to 56.0% and 0.153 (p < 0.0001 and p = 0.239), respectively. The mean reading time was 173 s without TS and 170 s with TS (p = 0.925). CONCLUSION: The detectability of suspected brain infarctions was significantly improved with TS CT images. KEY POINTS: • Although it is established that MRI is superior to CT in the detection of strokes, the first choice of modality for suspected stroke patients is often CT. • An observer performance study with 14 radiologists was performed to evaluate whether temporal subtraction images derived from a non-rigid transformation algorithm can significantly improve the detectability of newly developed brain infarcts on CT. • Temporal subtraction images were shown to significantly improve the detectability of newly developed brain infarcts on CT.


Assuntos
Infarto Encefálico/diagnóstico por imagem , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833191

RESUMO

Manufacturing meltblown nonwoven fabrics requires special grades of resin with very low viscosity, which are not dealt with so much on market and cost quite high compared to the standard grades. We propose a high-shear rate processing method that can quickly and easily produce such low-viscosity resin from the commercial one without using organic peroxides. In this method, we apply high-shear stress to molten resin by using a high-shear extruder, which is a single screw extruder with high screw rotation speed, and the resin is thermally decomposed of its shear-induced heat which is quickly generated. We found that polypropylene with a value of melt flow rate over a thousand, which was required for the meltblown process, was produced from the standard grade with the high-shear extruder at the screw rotation speed of 3600 min-1 and the barrel temperature over 300 ∘C. Using the degradated polypropylene, a meltblown nonwoven fabric sheet was successfully fabricated. We also developed a numerical simulator of the high-shear extruder which can handle a wide range of the screw rotation speed and barrel temperature by the Nusselt number modulated with the operational conditions. The experimental values of the zero-shear viscosity and temperature at the exit of the extruder agreed well with the simulation results. Our high-shear rate processing method will enable us to quickly and easily produce various meltblown nonwoven fabric sheets at low costs.

6.
Sci Rep ; 11(1): 18422, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531429

RESUMO

To determine whether temporal subtraction (TS) CT obtained with non-rigid image registration improves detection of various bone metastases during serial clinical follow-up examinations by numerous radiologists. Six board-certified radiologists retrospectively scrutinized CT images for patients with history of malignancy sequentially. These radiologists selected 50 positive and 50 negative subjects with and without bone metastases, respectively. Furthermore, for each subject, they selected a pair of previous and current CT images satisfying predefined criteria by consensus. Previous images were non-rigidly transformed to match current images and subtracted from current images to automatically generate TS images. Subsequently, 18 radiologists independently interpreted the 100 CT image pairs to identify bone metastases, both without and with TS images, with each interpretation separated from the other by an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Compared with interpretation without TS images, interpretation with TS images was associated with a significantly higher mean figure of merit (0.710 vs. 0.658; JAFROC analysis, P = 0.0027). Mean sensitivity at lesion-based was significantly higher for interpretation with TS compared with that without TS (46.1% vs. 33.9%; P = 0.003). Mean false positive count per subject was also significantly higher for interpretation with TS than for that without TS (0.28 vs. 0.15; P < 0.001). At the subject-based, mean sensitivity was significantly higher for interpretation with TS images than that without TS images (73.2% vs. 65.4%; P = 0.003). There was no significant difference in mean specificity (0.93 vs. 0.95; P = 0.083). TS significantly improved overall performance in the detection of various bone metastases.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Tomografia Computadorizada por Raios X/normas , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/secundário , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Radiologistas/estatística & dados numéricos , Sensibilidade e Especificidade , Software , Tomografia Computadorizada por Raios X/métodos
7.
PLoS One ; 13(11): e0207661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444907

RESUMO

We aimed to describe the development of an inference model for computer-aided diagnosis of lung nodules that could provide valid reasoning for any inferences, thereby improving the interpretability and performance of the system. An automatic construction method was used that considered explanation adequacy and inference accuracy. In addition, we evaluated the usefulness of prior experts' (radiologists') knowledge while constructing the models. In total, 179 patients with lung nodules were included and divided into 79 and 100 cases for training and test data, respectively. F-measure and accuracy were used to assess explanation adequacy and inference accuracy, respectively. For F-measure, reasons were defined as proper subsets of Evidence that had a strong influence on the inference result. The inference models were automatically constructed using the Bayesian network and Markov chain Monte Carlo methods, selecting only those models that met the predefined criteria. During model constructions, we examined the effect of including radiologist's knowledge in the initial Bayesian network models. Performance of the best models in terms of F-measure, accuracy, and evaluation metric were as follows: 0.411, 72.0%, and 0.566, respectively, with prior knowledge, and 0.274, 65.0%, and 0.462, respectively, without prior knowledge. The best models with prior knowledge were then subjectively and independently evaluated by two radiologists using a 5-point scale, with 5, 3, and 1 representing beneficial, appropriate, and detrimental, respectively. The average scores by the two radiologists were 3.97 and 3.76 for the test data, indicating that the proposed computer-aided diagnosis system was acceptable to them. In conclusion, the proposed method incorporating radiologists' knowledge could help in eliminating radiologists' distrust of computer-aided diagnosis and improving its performance.


Assuntos
Diagnóstico por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Teorema de Bayes , Humanos , Neoplasias Pulmonares/patologia , Cadeias de Markov , Modelos Teóricos , Método de Monte Carlo , Variações Dependentes do Observador
8.
Int J Comput Assist Radiol Surg ; 12(5): 767-776, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28285338

RESUMO

PURPOSE: In our previous study, we developed a computer-aided diagnosis (CADx) system using imaging findings annotated by radiologists. The system, however, requires radiologists to input many imaging findings. In order to reduce such an interaction of radiologists, we further developed a CADx system using derived imaging findings based on calculated image features, in which the system only requires few user operations. The purpose of this study is to check whether calculated image features (CFT) or derived imaging findings (DFD) can represent information in imaging findings annotated by radiologists (AFD). METHODS: We calculate 2282 image features and derive 39 imaging findings by using information on a nodule position and its type (solid or ground-glass). These image features are categorized into shape features, texture features and imaging findings-specific features. Each imaging finding is derived based on each corresponding classifier using random forest. To check whether CFT or DFD can represent information in AFD, under an assumption that the accuracies of classifiers are the same if information included in input is the same, we constructed classifiers by using various types of information (CTT, DFD and AFD) and compared accuracies on an inferred diagnosis of a nodule. We employ SVM with RBF kernel as classifier to infer a diagnosis name. RESULTS: Accuracies of classifiers using DFD, CFT, AFD and CFT [Formula: see text] AFD were 0.613, 0.577, 0.773 and 0.790, respectively. Concordance rates between DFD and AFD of shape findings, texture findings and surrounding findings were 0.644, 0.871 and 0.768, respectively. CONCLUSIONS: The results suggest that CFT and AFD are similar information and CFT represent only a portion of AFD. Particularly, CFT did not contain shape information in AFD. In order to decrease an interaction of radiologists, a development of a method which overcomes these problems is necessary.


Assuntos
Diagnóstico por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Variações Dependentes do Observador , Radiologistas , Radiologia/métodos , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA