Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 18(9): e1010522, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155642

RESUMO

After years of experience, humans become experts at perceiving letters. Is this visual capacity attained by learning specialized letter features, or by reusing general visual features previously learned in service of object categorization? To explore this question, we first measured the perceptual similarity of letters in two behavioral tasks, visual search and letter categorization. Then, we trained deep convolutional neural networks on either 26-way letter categorization or 1000-way object categorization, as a way to operationalize possible specialized letter features and general object-based features, respectively. We found that the general object-based features more robustly correlated with the perceptual similarity of letters. We then operationalized additional forms of experience-dependent letter specialization by altering object-trained networks with varied forms of letter training; however, none of these forms of letter specialization improved the match to human behavior. Thus, our findings reveal that it is not necessary to appeal to specialized letter representations to account for perceptual similarity of letters. Instead, we argue that it is more likely that the perception of letters depends on domain-general visual features.


Assuntos
Redes Neurais de Computação , Reconhecimento Visual de Modelos , Humanos , Aprendizagem , Percepção Visual
2.
J Cogn Neurosci ; 34(9): 1670-1680, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704550

RESUMO

Responses to visually presented objects along the cortical surface of the human brain have a large-scale organization reflecting the broad categorical divisions of animacy and object size. Emerging evidence indicates that this topographical organization is supported by differences between objects in mid-level perceptual features. With regard to the timing of neural responses, images of objects quickly evoke neural responses with decodable information about animacy and object size, but are mid-level features sufficient to evoke these rapid neural responses? Or is slower iterative neural processing required to untangle information about animacy and object size from mid-level features, requiring hundreds of milliseconds more processing time? To answer this question, we used EEG to measure human neural responses to images of objects and their texform counterparts-unrecognizable images that preserve some mid-level feature information about texture and coarse form. We found that texform images evoked neural responses with early decodable information about both animacy and real-world size, as early as responses evoked by original images. Furthermore, successful cross-decoding indicates that both texform and original images evoke information about animacy and size through a common underlying neural basis. Broadly, these results indicate that the visual system contains a mid-level feature bank carrying linearly decodable information on animacy and size, which can be rapidly activated without requiring explicit recognition or protracted temporal processing.


Assuntos
Eletroencefalografia , Reconhecimento Visual de Modelos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Reconhecimento Psicológico
3.
Arch Phys Med Rehabil ; 96(4 Suppl): S94-103, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25194451

RESUMO

OBJECTIVE: To determine how interhemispheric balance in stroke, measured using transcranial magnetic stimulation (TMS), relates to balance defined using neuroimaging (functional magnetic resonance [fMRI], diffusion-tensor imaging [DTI]) and how these metrics of balance are associated with clinical measures of upper-limb function and disability. DESIGN: Cross sectional. SETTING: Laboratory. PARTICIPANTS: Patients with chronic stroke (N = 10; age, 63 ± 9 y) in a population-based sample with unilateral upper-limb paresis. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Interhemispheric balance was measured with TMS, fMRI, and DTI. TMS defined interhemispheric differences in the recruitment of corticospinal output, size of the corticomotor output maps, and degree of mutual transcallosal inhibition that they exerted on one another. fMRI studied whether cortical activation during the movement of the paretic hand was lateralized to the ipsilesional or to the contralesional primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA). DTI was used to define interhemispheric differences in the integrity of the corticospinal tracts projecting from the M1. Clinical outcomes tested function (upper extremity Fugl-Meyer [UEFM]) and perceived disability in the use of the paretic hand (Motor Activity Log [MAL] amount score). RESULTS: Interhemispheric balance assessed with TMS relates differently to fMRI and DTI. Patients with high fMRI lateralization to the ipsilesional hemisphere possessed stronger ipsilesional corticomotor output maps (M1: r = .831, P = .006; PMC: r = .797, P = .01) and better balance of mutual transcallosal inhibition (r = .810, P = .015). Conversely, we found that patients with less integrity of the corticospinal tracts in the ipsilesional hemisphere show greater corticospinal output of homologous tracts in the contralesional hemisphere (r = .850, P = .004). However, an imbalance in integrity and output do not relate to transcallosal inhibition. Clinically, although patients with less integrity of corticospinal tracts from the ipsilesional hemisphere showed worse impairments (UEFM) (r = -.768, P = .016), those with low fMRI lateralization to the ipsilesional hemisphere had greater perception of disability (MAL amount score) (M1: r = .883, P = .006; PMC: r = .817, P = .007; SMA: r = .633, P = .062). CONCLUSIONS: In patients with chronic motor deficits of the upper limb, fMRI may serve to mark perceived disability and transcallosal influence between hemispheres. DTI-based integrity of the corticospinal tracts, however, may be useful in categorizing the range of functional impairments of the upper limb. Further, in patients with extensive corticospinal damage, DTI may help infer the role of the contralesional hemisphere in recovery.


Assuntos
Avaliação da Deficiência , Paresia/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Extremidade Superior , Idoso , Doença Crônica , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Paresia/diagnóstico , Tratos Piramidais/fisiopatologia
4.
J Spinal Cord Med ; 41(5): 503-517, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784042

RESUMO

OBJECTIVE: Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). DESIGN: Longitudinal, randomized, controlled, double-blinded cohort study. SETTING: Cleveland Clinic Foundation, Cleveland, Ohio, USA. PARTICIPANTS: Eight male subjects with chronic incomplete motor tetraplegia. INTERVENTIONS: Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. OUTCOME MEASURES: We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). RESULTS: We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). CONCLUSION: Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. TRIAL REGISTRATION: NCT01539109.


Assuntos
Terapia por Exercício/métodos , Quadriplegia/terapia , Traumatismos da Medula Espinal/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Contração Muscular , Reabilitação Neurológica/métodos , Projetos Piloto , Quadriplegia/reabilitação , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação
5.
Neuroscience ; 326: 95-104, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27058145

RESUMO

It is well known that corticomotor excitability is altered during the post-exercise depression following fatigue within the primary motor cortex (M1). However, it is currently unknown whether corticomotor reorganization following muscle fatigue differs between magnitudes of force and whether corticomotor reorganization occurs measured with transcranial magnetic stimulation (TMS). Fifteen young healthy adults (age 23.8±1.4, 8 females) participated in a within-subjects, repeated measures design study, where they underwent three testing sessions separated by one-week each. Subjects performed separate sessions of each: low-force isometric contraction (30% maximal voluntary contraction [MVC]), high-force isometric contraction (95% MVC) of the first dorsal interosseous (FDI) muscle until self-perceived exhaustion, as well as one session of a 30-min rest as a control. We examined changes in corticomotor map area, excitability and location of the FDI representation in and around M1 using TMS. The main finding was that following low-force, but not high-force fatigue (HFF) corticomotor map area and excitability reduced [by 3cm(2) (t(14)=-2.94, p=0.01) and 56% respectively t(14)=-4.01, p<0.001)]. Additionally, the region of corticomotor excitability shifted posteriorly (6.4±2.5mm) (t(14)=-6.33, p=.019). Corticomotor output became less excitable particularly in regions adjoining M1. Overall, post-exercise depression is present in low-force, but not for HFF. Further, low-force fatigue (LFF) results in a posterior shift in corticomotor output. These changes may be indicative of increased sensory feedback from the somatosensory cortex during the recovery phase of fatigue.


Assuntos
Exercício Físico , Contração Isométrica , Córtex Motor/fisiologia , Fadiga Muscular , Adulto , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
6.
Restor Neurol Neurosci ; 33(6): 911-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26484700

RESUMO

PURPOSE: To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. METHODS: In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (n = 6) or sham (n = 6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. RESULTS: Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. CONCLUSIONS: Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices.


Assuntos
Córtex Motor/fisiopatologia , Manipulações Musculoesqueléticas/métodos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Idoso , Método Duplo-Cego , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/patologia , Destreza Motora/fisiologia , Projetos Piloto , Prognóstico , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/patologia , Estimulação Magnética Transcraniana , Resultado do Tratamento
7.
J Electromyogr Kinesiol ; 25(5): 754-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26111434

RESUMO

OBJECTIVE: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in accurately tracking recovery and disease. However, majority of evidence pertains to reproducibility of metrics for distal upper limb muscles. We investigate for the first time, reliability of corticospinal physiology for a large proximal muscle - the biceps brachii and relate how varying statistical analyses can influence interpretations. METHODS: 14 young right-handed healthy participants completed two sessions assessing resting motor threshold (RMT), motor evoked potentials (MEPs), motor map and intra-cortical inhibition (ICI) from the left biceps brachii. Analyses included paired t-tests, Pearson's, intra-class (ICC) and concordance correlation coefficients (CCC) and Bland-Altman plots. RESULTS: Unlike paired t-tests, ICC, CCC and Pearson's were >0.6 indicating good reliability for RMTs, MEP intensities and locations of map; however values were <0.3 for MEP responses and ICI. CONCLUSIONS: Corticospinal physiology, defining excitability and output in terms of intensity of the TMS device, and spatial loci are the most reliable metrics for the biceps. MEPs and variables based on MEPs are less reliable since biceps receives fewer cortico-motor-neuronal projections. Statistical tests of agreement and associations are more powerful reliability indices than inferential tests. SIGNIFICANCE: Reliable metrics of proximal muscles when translated to a larger number of participants would serve to sensitively track and prognosticate function in neurological disorders such as stroke where proximal recovery precedes distal.


Assuntos
Braço/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Eletromiografia/normas , Potencial Evocado Motor , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Estimulação Magnética Transcraniana/normas
8.
Nat Hum Behav ; 3(6): 552-553, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061488
9.
PLoS One ; 9(2): e89371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586726

RESUMO

Aging-related weakness is due in part to degeneration within the central nervous system. However, it is unknown how changes to the representation of corticospinal output in the primary motor cortex (M1) relate to such weakness. Transcranial magnetic stimulation (TMS) is a noninvasive method of cortical stimulation that can map representation of corticospinal output devoted to a muscle. Using TMS, we examined age-related alterations in maps devoted to biceps brachii muscle to determine whether they predicted its age-induced weakness. Forty-seven right-handed subjects participated: 20 young (22.6 ± 0.90 years) and 27 old (74.96 ± 1.35 years). We measured strength as force of elbow flexion and electromyographic activation of biceps brachii during maximum voluntary contraction. Mapping variables included: 1) center of gravity or weighted mean location of corticospinal output, 2) size of map, 3) volume or excitation of corticospinal output, and 4) response density or corticospinal excitation per unit area. Center of gravity was more anterior in old than in young (p<0.001), though there was no significant difference in strength between the age groups. Map size, volume, and response density showed no significant difference between groups. Regardless of age, center of gravity significantly predicted strength (ß = -0.34, p = 0.005), while volume adjacent to the core of map predicted voluntary activation of biceps (ß = 0.32, p = 0.008). Overall, the anterior shift of the map in older adults may reflect an adaptive change that allowed for the maintenance of strength. Laterally located center of gravity and higher excitation in the region adjacent to the core in weaker individuals could reflect compensatory recruitment of synergistic muscles. Thus, our study substantiates the role of M1 in adapting to aging-related weakness and subtending strength and muscle activation across age groups. Mapping from M1 may offer foundation for an examination of mechanisms that preserve strength in elderly.


Assuntos
Envelhecimento/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiopatologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Idoso , Mapeamento Encefálico , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Contração Muscular/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA