Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 395(3): 271-283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183459

RESUMO

In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.


Assuntos
Fosfoglicerato Desidrogenase , Células Satélites de Músculo Esquelético , Camundongos , Animais , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
2.
Exp Cell Res ; 433(2): 113820, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879549

RESUMO

The Warburg effect links growth and glycolysis in cancer. A key purpose of the Warburg effect is to generate glycolytic intermediates for anabolic reactions, such as nucleotides → RNA/DNA and amino acids → protein synthesis. The aim of this study was to investigate whether a similar 'glycolysis-for-anabolism' metabolic reprogramming also occurs in hypertrophying skeletal muscle. To interrogate this, we first induced C2C12 myotube hypertrophy with IGF-1. We then added 14C glucose to the differentiation medium and measured radioactivity in isolated protein and RNA to establish whether 14C had entered anabolism. We found that especially protein became radioactive, suggesting a glucose → glycolytic intermediates → non-essential amino acid(s) → protein series of reactions, the rate of which was increased by IGF-1. Next, to investigate the importance of glycolytic flux and non-essential amino acid synthesis for myotube hypertrophy, we exposed C2C12 and primary mouse myotubes to the glycolysis inhibitor 2-Deoxy-d-glucose (2DG). We found that inhibiting glycolysis lowered C2C12 and primary myotube size. Similarly, siRNA silencing of PHGDH, the key enzyme of the serine biosynthesis pathway, decreased C2C12 and primary myotube size; whereas retroviral PHGDH overexpression increased C2C12 myotube size. Together these results suggest that glycolysis is important for hypertrophying myotubes, which reprogram their metabolism to facilitate anabolism, similar to cancer cells.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias , Animais , Camundongos , Fator de Crescimento Insulin-Like I/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Neoplasias/metabolismo , RNA/metabolismo , Hipertrofia/metabolismo , Glucose/farmacologia , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacologia
3.
J Cell Mol Med ; 27(4): 515-528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722313

RESUMO

Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Masculino , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Osteoartrite/metabolismo , Cartilagem/metabolismo , Cartilagem Articular/patologia
4.
Biochem Biophys Res Commun ; 644: 15-24, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36621148

RESUMO

Titanium (Ti) ion can stimulate osteoblast apoptosis and therefore have a high potential to play a negative role in the aseptic loosening of implants. Mitochondrial abnormalities are closely related to osteoblast dysfunction. However, the mitochondrial molecular mechanism of Ti ion induced osteoblastic cell apoptosis is still unclear. This study investigated in vitro mitochondrial oxidative stress (mtROS) mediated mitochondrial dysfunction involved in Ti ion-induced apoptosis of murine MC3T3-E1 osteoblastic cells. In addition to reducing mitochondrial membrane potential (MMP) and decreasing adenosine triglyceride production, exposure to Ti ions increased mitochondrial oxidative stress. Moreover, mitochondrial abnormalities significantly contributed to Ti ion induction of osteoblastic cellular apoptosis. A mitochondria-specific antioxidant, mitoquinone (MitoQ), alleviated Ti ion-induced mitochondrial dysfunction and apoptosis in osteoblastic cells, indicating that Ti ion mainly induces mitochondrial oxidative stress to produce a cytotoxic effect on osteoblasts. Here we show that the primary regulator of mitochondrial permeability transition pore (mPTP), cyclophilin D (CypD), is involved in mitochondrial dysfunction and osteoblast cell apoptosis induced by Ti ion. Overexpression of CypD exacerbates osteoblast apoptosis and impairs osteogenic function. Moreover, detrimental effects of CypD were rescued by cyclosporin A (CsA), an inhibitor of CypD, which shows its protective effect on mitochondrial and osteogenic osteoblast functions. Based on new insights into the mitochondrial mechanisms underlying Ti ion-induced apoptosis of osteoblastic cells, the findings of this study lay the foundation for the clinical use of CypD inhibitors to prevent or treat implant failure.


Assuntos
Estresse Oxidativo , Titânio , Camundongos , Animais , Peptidil-Prolil Isomerase F/metabolismo , Titânio/farmacologia , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
5.
J Periodontal Res ; 58(2): 392-402, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36710264

RESUMO

BACKGROUND AND OBJECTIVE: Leptin-deficient obesity is associated with various systemic diseases including diabetes and low bone mass phenotype. However, the periodontal status of leptin-deficient obese individuals is still unclear. In this study, we aimed to analyze the periodontal status, alveolar bone phenotype, and oral microbiome status in leptin-deficient obese mice (ob/ob mice). METHODS: This study used 12-week-old wild-type and ob/ob male mice. The alveolar bone phenotype and periodontal status in the maxilla were analyzed by micro-CT and histological analysis. Osteoclasts in alveolar bone were visualized by TRAP staining. Expressions of inflammatory markers (MMP-9, IL-1ß, and TGF-ß1) and osteoclastogenic markers (RANKL and OPG) in periodontium were analyzed by immunohistochemistry and RT-qPCR. The oral microbiome was analyzed by 16 S rDNA sequencing. RESULTS: CEJ-ABC distance in maxillary molars (M1-M3) of ob/ob mice was significantly higher compared with that of wild-type. The alveolar bone BV/TV ratio was reduced in ob/ob mice compared with wild-type. Higher numbers of osteoclasts were observed in ob/ob mice alveolar bone adjacent to the molar root. Epithelial hyperplasia in gingiva and disordered periodontal ligaments was observed in ob/ob mice. RANKL/OPG expression ratio was increased in ob/ob mice compared with wild-type. Expressions of inflammatory markers MMP-9, IL-1ß, and TGF-ß1 were increased in ob/ob mice compared with wild-type. Oral microbiome analysis showed that beneficial bacteria Akkermansia and Ruminococcaceae_UCG_014 were more abundant in the wild-type mice while the inflammation-related Flavobacterium was more abundant in ob/ob mice. CONCLUSION: In conclusion, ob/ob mice showed higher expressions of inflammatory factors, increased alveolar bone loss, lower abundance of the beneficial bacteria, and higher abundance of inflammatory bacteria in the oral cavity, suggesting leptin-deficient obesity as a risk factor for periodontitis development in ob/ob mice.


Assuntos
Perda do Osso Alveolar , Microbiota , Periodontite , Camundongos , Masculino , Animais , Fator de Crescimento Transformador beta1 , Metaloproteinase 9 da Matriz , Leptina , Periodontite/metabolismo , Perda do Osso Alveolar/patologia , Camundongos Endogâmicos , Fenótipo , Obesidade/complicações , Camundongos Endogâmicos C57BL
6.
Exp Cell Res ; 417(1): 113204, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588795

RESUMO

Muscle stem cells (MuSCs) are involved in muscle maintenance and regeneration. Mechanically loaded MuSCs within their native niche undergo tensile and shear deformations, but how MuSCs sense mechanical stimuli and translate these into biochemical signals regulating function and fate is still poorly understood. We aimed to investigate whether the glycocalyx is involved in the MuSC mechanoresponse, and whether MuSC morphology affects mechanical loading-induced pressure, shear stress, and fluid velocity distribution. FSS-induced deformation of active proliferating MuSCs (myoblasts) with intact or degraded glycocalyx was assessed by live-cell imaging. Glycocalyx-degradation did not significantly affect nitric oxide production, but reduced FSS-induced myoblast deformation and modulated gene expression. Finite-element analysis revealed that the distribution of FSS-induced pressure, shear stress, and fluid velocity on myoblasts was non-uniform, and the magnitude depended on myoblast morphology and apex-height. In conclusion, our results suggest that the glycocalyx does not play a role in NO production in myoblasts but might impact mechanotransduction and gene expression, which needs further investigation. Future studies will unravel the underlying mechanism by which the glycocalyx affects FSS-induced myoblast deformation, which might be related to increased drag forces. Moreover, MuSCs with varying apex-height experience different levels of FSS-induced pressure, shear stress, and fluid velocity, suggesting differential responsiveness to fluid shear forces.


Assuntos
Glicocálix , Mecanotransdução Celular , Glicocálix/metabolismo , Mecanotransdução Celular/fisiologia , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Estresse Mecânico
7.
Eur J Appl Physiol ; 123(7): 1469-1478, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36877252

RESUMO

Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.


Assuntos
Músculo Esquelético , Mioglobina , Humanos , Mioglobina/genética , Mioglobina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Oxigênio/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 322(5): R368-R388, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108108

RESUMO

Spasticity is the most common neurological disorder associated with increased muscle contraction causing impaired movement and gait. The aim of this study was to characterize the physical performance, skeletal muscle function, and phenotype of mice with a hereditary spastic mutation (B6.Cg-Glrbspa/J). Motor function, gait, and physical activity of juvenile and adult spastic mice and the morphological, histological, and mechanical characteristics of their soleus and gastrocnemius medialis muscles were compared with those of their wild-type (WT) littermates. Spastic mice showed attenuated growth, impaired motor function, and low physical activity. Gait of spastic mice was characterized by a typical hopping pattern. Spastic mice showed lower muscle forces, which were related to the smaller physiological cross-sectional area of spastic muscles. The muscle-tendon complex length-force relationship of adult gastrocnemius medialis was shifted toward shorter lengths, which was explained by attenuated longitudinal tibia growth. Spastic gastrocnemius medialis was more fatigue resistant than WT gastrocnemius medialis. This was largely explained by a higher mitochondrial content in muscle fibers and relatively higher percentage of slow-type muscle fibers. Muscles of juvenile spastic mice showed similar differences compared with WT juvenile mice, but these were less pronounced than between adult mice. This study shows that in spastic mice, disturbed motor function and gait is likely to be the result of hyperactivity of skeletal muscle and impaired skeletal muscle growth, which progress with age.


Assuntos
Paralisia Cerebral , Espasticidade Muscular , Animais , Paralisia Cerebral/patologia , Camundongos , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Força Muscular , Músculo Esquelético/fisiologia , Desempenho Físico Funcional , Receptores de Glicina
9.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684342

RESUMO

Cellular activities, such as attachment, spreading, proliferation, migration, and differentiation are indispensable for the success of bone tissue engineering. Mesenchymal stromal cells (MSCs) are the key precursor cells to regenerate bone. Bioactive compounds from natural products had shown bone regenerative potential. Notoginsenoside R1 (NGR1) is a primary bioactive natural compound that regulates various biological activities, including cardiovascular protection, neuro-protection, and anti-cancer effects. However, the effect of NGR1 on migration, adhesion, spreading, and osteogenic differentiation of MSCs required for bone tissue engineering application has not been tested properly. In this study, we aimed to analyze the effect of NGR1 on the cellular activities of MSCs. Since human adipose-derived stromal cells (hASCs) are commonly used MSCs for bone tissue engineering, we used hASCs as a model of MSCs. The optimal concentration of 0.05 µg/mL NGR1 was biocompatible and promoted migration and osteogenic differentiation of hASCs. Pro-angiogenic factor VEGF expression was upregulated in NGR1-treated hASCs. NGR1 enhanced the adhesion and spreading of hASCs on the bio-inert glass surface. NGR1 robustly promoted hASCs adhesion and survival in 3D-printed TCP scaffold both in vitro and in vivo. NGR1 mitigated LPS-induced expression of inflammatory markers IL-1ß, IL-6, and TNF-α in hASCs as well as inhibited the RANKL/OPG expression ratio. In conclusion, the biocompatible NGR1 promoted the migration, adhesion, spreading, osteogenic differentiation, and anti-inflammatory properties of hASCs.


Assuntos
Ginsenosídeos , Células-Tronco Mesenquimais , Tecido Adiposo/metabolismo , Diferenciação Celular , Células Cultivadas , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Humanos , Osteogênese
10.
Biophys J ; 120(13): 2665-2678, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087215

RESUMO

Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.


Assuntos
Músculo Esquelético , Mioblastos , Animais , Diferenciação Celular , Expressão Gênica , Camundongos , Estresse Mecânico
11.
J Cell Mol Med ; 25(24): 11278-11289, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786818

RESUMO

Oxidative stress (OS)-induced mitochondrial damage and the subsequent osteoblast dysfunction contributes to the initiation and progression of osteoporosis. Notoginsenoside R1 (NGR1), isolated from Panax notoginseng, has potent antioxidant effects and has been widely used in traditional Chinese medicine. This study aimed to investigate the protective property and mechanism of NGR1 on oxidative-damaged osteoblast. Osteoblastic MC3T3-E1 cells were pretreated with NGR1 24 h before hydrogen peroxide administration simulating OS attack. Cell viability, apoptosis rate, osteogenic activity and markers of mitochondrial function were examined. The role of C-Jun N-terminal kinase (JNK) signalling pathway on oxidative injured osteoblast and mitochondrial function was also detected. Our data indicate that NGR1 (25 µM) could reduce apoptosis as well as restore osteoblast viability and osteogenic differentiation. NGR1 also reduced OS-induced mitochondrial ROS and restored mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA copy number. NGR1 could block JNK pathway and antagonize the destructive effects of OS. JNK inhibitor (SP600125) mimicked the protective effects of NGR1while JNK agonist (Anisomycin) abolished it. These data indicated that NGR1 could significantly attenuate OS-induced mitochondrial damage and restore osteogenic differentiation of osteoblast via suppressing JNK signalling pathway activation, thus becoming a promising agent in treating osteoporosis.


Assuntos
Ginsenosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Superóxidos/metabolismo
12.
Biochem Biophys Res Commun ; 547: 176-182, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33618224

RESUMO

Skeletal muscle fibrosis and regeneration are modulated by transforming growth factor ß (TGF-ß) superfamily. Amongst them, TGF-ß1 is a highly potent pro-fibrotic factor, while TGF-ß3 has been implicated to reduce scar formation and collagen production in skin and vocal mucosa. However, little is known about the individual and combined short- and long-term effects of TGF-ß1 and TGF-ß3 on collagen expression in myoblasts and myotubes. Here we show that in C2C12 myoblasts TGF-ß1 and/or TGF-ß3 increased mRNA expression of Ctgf and Fgf-2 persistently after 3 h and of Col1A1 after 24 h, while TGF-ß1+TGF-ß3 mitigated these effects after 48 h incubation. Gene expression of Tgf-ß1 was enhanced by TGF-ß1 and/or TGF-ß3 after 24 h and 48 h. However, Tgfbr1 mRNA expression was reduced at 48 h. After 48 h incubation with TGF-ß1 and/or TGF-ß3, Col3A1 and Col4A1 mRNA expression levels were decreased. Myoblasts produced collagen after three days incubation with TGF-ß1 and/or TGF-ß3 in a dose independent manner. Collagen deposition was doubled when myoblasts differentiated into myotubes and TGF-ß1 and/or TGF-ß3 did not stimulate collagen production any further. TGF-ß type I receptor (TGFBR1) inhibitor, LY364947, suppressed TGF-ßs-induced collagen production. Collagen I expression was higher in myotubes than in myoblasts. TGF-ß1 and/or TGF-ß3 inhibited myotube differentiation which was antagonized by LY364947. These results indicate that both C2C12 myoblasts and myotubes produce collagen. Whereas TGF-ß1 and TGF-ß3 individually and simultaneously stimulate collagen production in C2C12 differentiating myoblasts, in myotubes these effects are less prominent. In muscle cells, TGF-ß3 is ineffective to antagonize TGF-ß1-induced collagen production.


Assuntos
Colágeno/biossíntese , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta3/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colágeno/metabolismo , Sinergismo Farmacológico , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo
13.
Exerc Immunol Rev ; 27: 42-53, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33965897

RESUMO

Atherosclerosis is a chronic inflammatory cardiovascular disease, which results from lipid accumulation in the blood vessel wall, forming a plaque, and ultimately restricting blood flow. The immune system plays a vital role in progression to plaque rupture. While recent evidence clearly indicates the anti-inflammatory function of regular exercise, the mechanisms by which regular exercise can modulate its pathophysiology is not well understood. In this review, we discuss how regular exercise can lower systemic inflammation directly via modulation of the immune system or indirectly via altered myokine concentrations and metabolites. We describe the exercise-induced responses of various myokines (such as IL-6, adiponectin, and FGF21), and how cell function in the innate immune system can be modulated via regular exercise, with the aim to modulate plaque formation in atherosclerosis.


Assuntos
Aterosclerose , Exercício Físico , Imunidade Inata , Citocinas , Humanos , Inflamação
14.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171812

RESUMO

Mechanical loading preserves bone mass and function-yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm3. After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics.


Assuntos
Núcleo Celular/fisiologia , Mecanotransdução Celular/fisiologia , Osteoblastos/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Camundongos , Osteoblastos/fisiologia , Osteócitos/metabolismo , RNA Mensageiro/genética , Resistência ao Cisalhamento/fisiologia , Transdução de Sinais/fisiologia , Estresse Mecânico
15.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992783

RESUMO

Nearly 100 years ago, Otto Warburg investigated the metabolism of growing tissues and discovered that tumors reprogram their metabolism. It is poorly understood whether and how hypertrophying muscle, another growing tissue, reprograms its metabolism too. Here, we studied pyruvate kinase muscle (PKM), which can be spliced into two isoforms (PKM1, PKM2). This is of interest, because PKM2 redirects glycolytic flux towards biosynthetic pathways, which might contribute to muscle hypertrophy too. We first investigated whether resistance exercise changes PKM isoform expression in growing human skeletal muscle and found that PKM2 abundance increases after six weeks of resistance training, whereas PKM1 decreases. Second, we determined that Pkm2 expression is higher in fast compared to slow fiber types in rat skeletal muscle. Third, by inducing hypertrophy in differentiated C2C12 cells and by selectively silencing Pkm1 and/or Pkm2 with siRNA, we found that PKM2 limits myotube growth. We conclude that PKM2 contributes to hypertrophy in C2C12 myotubes and indicates a changed metabolic environment within hypertrophying human skeletal muscle fibers. PKM2 is preferentially expressed in fast muscle fibers and may partly contribute to the increased potential for hypertrophy in fast fibers.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Treinamento Resistido , Hormônios Tireóideos/metabolismo , Adulto , Linhagem Celular , Humanos , Hipertrofia , Masculino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Proteínas de Ligação a Hormônio da Tireoide
16.
FASEB J ; 32(4): 2110-2123, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29217665

RESUMO

Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume ( R2 = 0.65; P < 0.001) and normalized endurance performance by performance oxygen consumption ( V̇o2), mean corpuscular hemoglobin concentration, and muscle oxygenation ( R2 = 0.92; P < 0.001). Combined sprint and endurance performance was explained by gross efficiency, performance V̇o2, and likely by muscle volume and fascicle length ( P = 0.056; P = 0.059). High performance V̇o2 related to a high oxidative capacity, high capillarization × myoglobin, and small physiologic cross-sectional area ( R2 = 0.67; P < 0.001). Results suggest that fascicle length and capillarization are important targets for training to optimize sprint and endurance performance simultaneously.-Van der Zwaard, S., van der Laarse, W. J., Weide, G., Bloemers, F. W., Hofmijster, M. J., Levels, K., Noordhof, D. A., de Koning, J. J., de Ruiter, C. J., Jaspers, R. T. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.


Assuntos
Treino Aeróbico/métodos , Fibras Musculares de Contração Rápida/fisiologia , Adulto , Humanos , Masculino , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Consumo de Oxigênio
17.
Curr Osteoporos Rep ; 17(5): 235-249, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31428977

RESUMO

PURPOSE OF REVIEW: Bone and muscle mass increase in response to mechanical loading and biochemical cues. Bone-forming osteoblasts differentiate into early osteocytes which ultimately mature into late osteocytes encapsulated in stiff calcified matrix. Increased muscle mass originates from muscle stem cells (MuSCs) enclosed between their plasma membrane and basal lamina. Stem cell fate and function are strongly determined by physical and chemical properties of their microenvironment, i.e., the cell niche. RECENT FINDINGS: The cellular niche is a three-dimensional structure consisting of extracellular matrix components, signaling molecules, and/or other cells. Via mechanical interaction with their niche, osteocytes and MuSCs are subjected to mechanical loads causing deformations of membrane, cytoskeleton, and/or nucleus, which elicit biochemical responses and secretion of signaling molecules into the niche. The latter may modulate metabolism, morphology, and mechanosensitivity of the secreting cells, or signal to neighboring cells and cells at a distance. Little is known about how mechanical loading of bone and muscle tissue affects osteocytes and MuSCs within their niches. This review provides an overview of physicochemical niche conditions of (early) osteocytes and MuSCs and how these are sensed and determine cell fate and function. Moreover, we discuss how state-of-the-art imaging techniques may enhance our understanding of these conditions and mechanisms.


Assuntos
Mecanotransdução Celular/fisiologia , Células Musculares/fisiologia , Osteócitos/fisiologia , Animais , Diferenciação Celular , Matriz Extracelular , Humanos , Estresse Mecânico
18.
FASEB J ; 31(1): 14-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729415

RESUMO

Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals as well as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food withdrawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs other organs in rodents and humans, and highlights which combinations may improve metabolic disorders.-Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations.


Assuntos
Exercício Físico/fisiologia , Privação de Alimentos/fisiologia , Animais , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Lipídeos/sangue , Obesidade/metabolismo
19.
Adv Exp Med Biol ; 1088: 153-206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390252

RESUMO

Myostatin was identified more than 20 years ago as a negative regulator of muscle mass in mice and cattle. Since then, a wealth of studies have uncovered the potential involvement of myostatin in muscle atrophy and sparked interest in myostatin as a promising therapeutic target to counteract decline of muscle mass in patients afflicted with different muscle-wasting conditions. Insight in the molecular mechanism of myostatin signaling and regulation of myostatin activity has resulted in the identification of specific treatments to inhibit myostatin signaling and related signaling pathways. Currently, several treatments that target myostatin and related proteins have been evaluated in preclinical animal models of muscle wasting, and some potential therapies have progressed to clinical trials. However, studies also revealed potential downsides of myostatin targeting in skeletal muscle and other tissues, which raises the question if myostatin is indeed a valuable target to counteract muscle atrophy. In this review we provide an updated overview of the molecular mechanisms of myostatin signaling, the preclinical evidence supporting a role for myostatin and related proteins in muscle atrophy, and the potential issues that arise when targeting myostatin. In addition, we evaluate the current clinical status of different treatments aimed at inhibiting myostatin and discuss future perspectives of targeting myostatin to counteract muscle atrophy.


Assuntos
Terapia de Alvo Molecular , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Miostatina/antagonistas & inibidores , Transdução de Sinais , Animais , Bovinos , Humanos , Camundongos , Atrofia Muscular/fisiopatologia
20.
Adv Exp Med Biol ; 1088: 109-137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390250

RESUMO

Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stimulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less clear. This review provides an overview of the mechanisms via which IGF-1 signaling is implicated in several conditions of muscle atrophy and via which mechanisms protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates protein degradation, predominantly by its inhibiting effect on proteasomal and lysosomal protein degradation. Caspase-dependent protein degradation is also attenuated by IGF/PI3K/Akt signaling, whereas evidence for an effect on calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling reduces during denervation-, unloading-, and joint immobilization-induced muscle atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging-associated muscle atrophy. During denervation and aging, IGF-1 overexpression or injection counteracts denervation- and aging-associated muscle atrophy, despite enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenuates immobilization- or unloading-induced muscle atrophy. Exploration of the possibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs targeting IGF-1 signaling components are promising targets to counterbalance muscle atrophy. Overall, the findings summarized in this review show that in disuse conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Atrofia Muscular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Humanos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA