RESUMO
The novel coronavirus SARS-CoV-2 was first detected in the Pacific Northwest region of the United States in January 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the United States, we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated effects of federal travel restrictions. This study provides evidence of widespread sustained transmission of SARS-CoV-2 within the United States and highlights the critical need for local surveillance.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Viagem , Betacoronavirus/isolamento & purificação , COVID-19 , Connecticut/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Viagem/legislação & jurisprudência , Estados Unidos/epidemiologia , Washington/epidemiologiaRESUMO
ABSTRACT: Human herpesvirus 6B (HHV-6B) reactivation and disease are increasingly reported after chimeric antigen receptor (CAR) T-cell therapy (CARTx). HHV-6 reactivation in the CAR T-cell product was recently reported, raising questions about product and patient management. Because of overlapping manifestations with immune effector cell-associated neurotoxicity syndrome, diagnosing HHV-6B encephalitis is challenging. We provide 2 lines of evidence assessing the incidence and outcomes of HHV-6B after CARTx. First, in a prospective study with weekly HHV-6B testing for up to 12 weeks after infusion, HHV-6B reactivation occurred in 8 of 89 participants; 3 had chromosomally integrated HHV-6 and were excluded, resulting in a cumulative incidence of HHV-6B reactivation of 6% (95% confidence interval [CI], 2.2-12.5). HHV-6B detection was low level (median peak, 435 copies per mL; interquartile range, 164-979) and did not require therapy. Second, we retrospectively analyzed HHV-6B detection in the blood and/or cerebrospinal fluid (CSF) within 12 weeks after infusion in CARTx recipients. Of 626 patients, 24 had symptom-driven plasma testing, with detection in 1. Among 34 patients with CSF HHV-6 testing, 1 patient had possible HHV-6 encephalitis for a cumulative incidence of 0.17% (95% CI, 0.02-0.94), although symptoms improved without treatment. Our data demonstrate that HHV-6B reactivation and disease are infrequent after CARTx. Routine HHV-6 monitoring is not warranted.
Assuntos
Herpesvirus Humano 6 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Infecções por Roseolovirus , Ativação Viral , Humanos , Herpesvirus Humano 6/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Infecções por Roseolovirus/imunologia , Infecções por Roseolovirus/virologia , Infecções por Roseolovirus/terapia , Infecções por Roseolovirus/diagnóstico , Receptores de Antígenos Quiméricos/imunologia , Ativação Viral/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Idoso , Estudos Prospectivos , Estudos Retrospectivos , Adulto Jovem , IncidênciaRESUMO
Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.
Assuntos
Artefatos , Gânglios Sensitivos , Herpesvirus Humano 1 , Células Receptoras Sensoriais , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Latência Viral , Animais , Camundongos , Morte Celular , Conjuntos de Dados como Assunto , Gânglios Sensitivos/imunologia , Gânglios Sensitivos/patologia , Gânglios Sensitivos/virologia , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/isolamento & purificação , MicroRNAs/análise , MicroRNAs/genética , Reprodutibilidade dos Testes , RNA Viral/análise , RNA Viral/genética , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/virologiaRESUMO
The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Interleucina-10 , Inflamassomos , HIV-1/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Linfócitos T CD4-Positivos , Imunidade Inata/genética , Genes Supressores de Tumor , Expressão Gênica , DNA , Carga ViralRESUMO
Chimeric antigen receptor (CAR) T cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR T cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR T cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR T cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR T cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR T cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR T cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.
Assuntos
Antígenos CD20 , Linfócitos B , Modelos Animais de Doenças , Infecções por HIV , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antígenos CD20/metabolismo , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Imunoterapia Adotiva/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Infecções por HIV/terapia , Infecções por HIV/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , HIV-1/imunologia , Carga Viral , Macaca mulattaRESUMO
Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.
Assuntos
COVID-19/epidemiologia , Regulação Viral da Expressão Gênica , Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Animais , COVID-19/patologia , COVID-19/transmissão , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , RNA Viral/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , Células Vero , Carga Viral , VirulênciaRESUMO
BACKGROUND: Rhinovirus (RV) infections can progress from the upper (URT) to lower (LRT) respiratory tract in immunocompromised individuals, causing high rates of fatal pneumonia. Little is known about how RV evolves within hosts during infection. METHODS: We sequenced RV complete genomes from 12 hematopoietic cell transplant patients with infection for up to 190 days from both URT (nasal wash, NW) and LRT (bronchoalveolar lavage, BAL). Metagenomic and amplicon next-generation sequencing were used to track the emergence and evolution of intrahost single nucleotide variants (iSNVs). RESULTS: Identical RV intrahost populations in matched NW and BAL specimens indicated no genetic adaptation is required for RV to progress from URT to LRT. Coding iSNVs were 2.3-fold more prevalent in capsid over nonstructural genes. iSNVs modeled were significantly more likely to be found in capsid surface residues, but were not preferentially located in known RV-neutralizing antibody epitopes. Newly emergent, genotype-matched iSNV haplotypes from immunocompromised individuals in 2008-2010 could be detected in Seattle-area community RV sequences in 2020-2021. CONCLUSIONS: RV infections in immunocompromised hosts can progress from URT to LRT with no specific evolutionary requirement. Capsid proteins carry the highest variability and emergent mutations can be detected in other, including future, RV sequences.
Assuntos
Infecções por Enterovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Proteínas do Capsídeo/genética , Capsídeo , Rhinovirus/genética , MutaçãoRESUMO
BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter Adaptive COVID-19 Treatment Trial 1, which randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 patients with COVID-19 were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95% CI, 1.40-2.71) for levels >245â pg/mL vs 1.04 (95% CI, .76-1.42) for levels <245â pg/mL. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy. CLINICAL TRIAL REGISTRATION: NCT04280705 (ClinicalTrials.gov).
Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Biomarcadores , Tratamento Farmacológico da COVID-19 , COVID-19 , RNA Viral , SARS-CoV-2 , Carga Viral , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , SARS-CoV-2/imunologia , Antivirais/uso terapêutico , RNA Viral/sangue , COVID-19/sangue , COVID-19/virologia , COVID-19/imunologia , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Idoso , Antígenos Virais/sangueRESUMO
BACKGROUND: The epidemiology of cytomegalovirus (CMV) after chimeric antigen receptor-modified T-cell immunotherapy (CARTx) is poorly understood owing to a lack of routine surveillance. METHODS: We prospectively enrolled 72 adult CMV-seropositive CD19-, CD20-, or BCMA-targeted CARTx recipients and tested plasma samples for CMV before and weekly up to 12 weeks after CARTx. We assessed CMV-specific cell-mediated immunity (CMV-CMI) before and 2 and 4 weeks after CARTx, using an interferon γ release assay to quantify T-cell responses to IE-1 and pp65. We tested pre-CARTx samples to calculate a risk score for cytopenias and infection (CAR-HEMATOTOX). We used Cox regression to evaluate CMV risk factors and evaluated the predictive performance of CMV-CMI for CMV reactivation in receiver operator characteristic curves. RESULTS: CMV was detected in 1 patient (1.4%) before and in 18 (25%) after CARTx, for a cumulative incidence of 27% (95% confidence interval, 16.8-38.2). The median CMV viral load (interquartile range) was 127 (interquartile range, 61-276) IU/mL, with no end-organ disease observed; 5 patients received preemptive therapy based on clinical results. CMV-CMI values reached a nadir 2 weeks after infusion and recovered to baseline levels by week 4. In adjusted models, BCMA-CARTx (vs CD19/CD20) and corticosteroid use for >3 days were significantly associated with CMV reactivation, and possible associations were detected for lower week 2 CMV-CMI and more prior antitumor regimens. The cumulative incidence of CMV reactivation almost doubled when stratified by BCMA-CARTx target and use of corticosteroids for >3 days (46% and 49%, respectively). CONCLUSIONS: CMV testing could be considered between 2 and 6 weeks in high-risk CARTx recipients.
Assuntos
Infecções por Citomegalovirus , Receptores de Antígenos Quiméricos , Adulto , Humanos , Citomegalovirus , Antígeno de Maturação de Linfócitos B , Imunidade Celular , Terapia Baseada em Transplante de Células e TecidosRESUMO
SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.
Assuntos
COVID-19 , Sirtuínas , Antivirais , Exorribonucleases/metabolismo , Humanos , Lisina , Metiltransferases/metabolismo , NAD , Provírus , RNA Viral/metabolismo , SARS-CoV-2 , Sirtuínas/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
BACKGROUND: Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS: Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS: Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS: The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.
Assuntos
COVID-19 , Adulto , Humanos , Criança , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Antivirais/uso terapêuticoRESUMO
Over 15 years after hepatotoxicity was first observed following administration of an adeno-associated virus (AAV) vector during a hemophilia B clinical trial, recent reports of treatment-associated neurotoxicity in animals and humans have brought the potential impact of AAV-associated toxicity back to prominence. In both pre-clinical studies and clinical trials, systemic AAV administration has been associated with neurotoxicity in peripheral nerve ganglia and spinal cord. Neurological signs have also been seen following direct AAV injection into the brain, both in non-human primates and in a clinical trial for late infantile Batten disease. Neurotoxic events appear variable across species, and preclinical animal studies do not fully predict clinical observations. Accumulating data suggest that AAV-associated neurotoxicity may be underdiagnosed and may differ between species in terms of frequency and/or severity. In this review, we discuss the different animal models that have been used to demonstrate AAV-associated neurotoxicity, its potential causes and consequences, and potential approaches to blunt AAV-associated neurotoxicity.
RESUMO
BACKGROUND: Community transmission of coronavirus 2019 (Covid-19) was detected in the state of Washington in February 2020. METHODS: We identified patients from nine Seattle-area hospitals who were admitted to the intensive care unit (ICU) with confirmed infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Clinical data were obtained through review of medical records. The data reported here are those available through March 23, 2020. Each patient had at least 14 days of follow-up. RESULTS: We identified 24 patients with confirmed Covid-19. The mean (±SD) age of the patients was 64±18 years, 63% were men, and symptoms began 7±4 days before admission. The most common symptoms were cough and shortness of breath; 50% of patients had fever on admission, and 58% had diabetes mellitus. All the patients were admitted for hypoxemic respiratory failure; 75% (18 patients) needed mechanical ventilation. Most of the patients (17) also had hypotension and needed vasopressors. No patient tested positive for influenza A, influenza B, or other respiratory viruses. Half the patients (12) died between ICU day 1 and day 18, including 4 patients who had a do-not-resuscitate order on admission. Of the 12 surviving patients, 5 were discharged home, 4 were discharged from the ICU but remained in the hospital, and 3 continued to receive mechanical ventilation in the ICU. CONCLUSIONS: During the first 3 weeks of the Covid-19 outbreak in the Seattle area, the most common reasons for admission to the ICU were hypoxemic respiratory failure leading to mechanical ventilation, hypotension requiring vasopressor treatment, or both. Mortality among these critically ill patients was high. (Funded by the National Institutes of Health.).
Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Estado Terminal/epidemiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Idoso , Asma/complicações , Asma/tratamento farmacológico , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Estado Terminal/mortalidade , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Hospitalização , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Radiografia , Respiração Artificial , Insuficiência Respiratória/etiologia , SARS-CoV-2 , Choque/etiologia , Tomografia Computadorizada por Raios X , Washington/epidemiologiaRESUMO
Decreased cytomegalovirus (CMV)-specific immunity after hematopoietic cell transplantation (HCT) is associated with late CMV reactivation and increased mortality. Whether letermovir prophylaxis-associated reduction in viral exposure influences CMV-specific immune reconstitution is unknown. In a prospective cohort of allogeneic HCT recipients who received letermovir, we compared polyfunctional CMV-specific T-cell responses to those of controls who received PCR-guided preemptive therapy before the introduction of letermovir. Thirteen-color flow cytometry was used to assess T-cell responses at 3 months after HCT following stimulation with CMV immediate early-1 (IE-1) antigen and phosphoprotein 65 (pp65) antigens. Polyfunctionality was characterized by combinatorial polyfunctionality analysis of antigen-specific T-cell subsets. Use of letermovir and reduction of viral exposure were assessed for their association with CMV-specific T-cell immunity. Polyfunctional T-cell responses to IE-1 and pp65 were decreased in letermovir recipients and remained diminished after adjustment for donor CMV serostatus, absolute lymphocyte count, and steroid use. Among letermovir recipients, greater peak CMV DNAemia and increased viral shedding were associated with stronger CD8+ responses to pp65, whereas the CMV shedding rate was associated with greater CD4+ responses to IE-1. In summary, our study provided initial evidence that letermovir may delay CMV-specific cellular reconstitution, possibly related to decreased CMV antigen exposure. Evaluating T-cell polyfunctionality may identify patients at risk for late CMV infection after HCT.
Assuntos
Acetatos/farmacologia , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas , Quinazolinas/farmacologia , Linfócitos T/imunologia , Adulto , Idoso , Citomegalovirus/efeitos dos fármacos , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Intervalo Livre de Doença , Feminino , Humanos , Modelos Lineares , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fenótipo , Linfócitos T/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Adulto JovemRESUMO
Despite limited genomic diversity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a wide range of clinical manifestations in different patient populations. The mechanisms behind these host differences are still unclear. Here, we examined host response gene expression across infection status, viral load, age, and sex among shotgun RNA sequencing profiles of nasopharyngeal (NP) swabs from 430 individuals with PCR-confirmed SARS-CoV-2 and 54 negative controls. SARS-CoV-2 induced a strong antiviral response with up-regulation of antiviral factors such as OAS1-3 and IFIT1-3 and T helper type 1 (Th1) chemokines CXCL9/10/11, as well as a reduction in transcription of ribosomal proteins. SARS-CoV-2 culture in human airway epithelial (HAE) cultures replicated the in vivo antiviral host response 7 days post infection, with no induction of interferon-stimulated genes after 3 days. Patient-matched longitudinal specimens (mean elapsed time = 6.3 days) demonstrated reduction in interferon-induced transcription, recovery of transcription of ribosomal proteins, and initiation of wound healing and humoral immune responses. Expression of interferon-responsive genes, including ACE2, increased as a function of viral load, while transcripts for B cell-specific proteins and neutrophil chemokines were elevated in patients with lower viral load. Older individuals had reduced expression of the Th1 chemokines CXCL9/10/11 and their cognate receptor CXCR3, as well as CD8A and granzyme B, suggesting deficiencies in trafficking and/or function of cytotoxic T cells and natural killer (NK) cells. Relative to females, males had reduced B cell-specific and NK cell-specific transcripts and an increase in inhibitors of nuclear factor kappa-B (NF-κB) signaling, possibly inappropriately throttling antiviral responses. Collectively, our data demonstrate that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.
Assuntos
Antivirais/imunologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade/genética , Cinética , Masculino , Pessoa de Meia-Idade , Nasofaringe/imunologia , Nasofaringe/virologia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Proteínas Ribossômicas/genética , SARS-CoV-2 , Fatores Sexuais , Transdução de Sinais/genética , Carga Viral , Cicatrização/genética , Adulto JovemRESUMO
The ongoing COVID-19 pandemic has created an unprecedented need for rapid diagnostic testing. The World Health Organization (WHO) recommends a standard assay that includes an RNA extraction step from a nasopharyngeal (NP) swab followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the purified SARS-CoV-2 RNA. The current global shortage of RNA extraction kits has caused a severe bottleneck to COVID-19 testing. The goal of this study was to determine whether SARS-CoV-2 RNA could be detected from NP samples via a direct RT-qPCR assay that omits the RNA extraction step altogether. The direct RT-qPCR approach correctly identified 92% of a reference set of blinded NP samples (n = 155) demonstrated to be positive for SARS-CoV-2 RNA by traditional clinical diagnostic RT-qPCR that included an RNA extraction. Importantly, the direct method had sufficient sensitivity to reliably detect those patients with viral loads that correlate with the presence of infectious virus. Thus, this strategy has the potential to ease supply choke points to substantially expand COVID-19 testing and screening capacity and should be applicable throughout the world.
Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/genética , Kit de Reagentes para Diagnóstico/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/virologia , Primers do DNA/normas , Humanos , Nasofaringe/virologia , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Estados Unidos , Carga ViralRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic demonstrates the need for accurate and convenient approaches to diagnose and therapeutically monitor respiratory viral infections. We demonstrated that self-sampling with mid-nasal foam swabs is well-tolerated and provides quantitative viral output concordant with flocked swabs. Using longitudinal home-based self-sampling, we demonstrate that nasal cytokine levels correlate and cluster according to immune cell of origin. Periods of stable viral loads are followed by rapid elimination, which could be coupled with cytokine expansion and contraction. Nasal foam swab self-sampling at home provides a precise, mechanistic readout of respiratory virus shedding and local immune responses.
Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2 , Cinética , Reprodutibilidade dos Testes , COVID-19/diagnóstico , CitocinasRESUMO
While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Cinética , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Carga ViralRESUMO
Across 20 vaccine breakthrough cases detected at our institution, all 20 (100%) infections were due to variants of concern (VOCs) and had a median Ct of 20.2 (IQR, 17.1-23.3). When compared with 5174 contemporaneous samples sequenced in our laboratory, VOCs were significantly enriched among breakthrough infections (P < .05).
Assuntos
COVID-19 , SARS-CoV-2 , Sequência de Bases , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Washington/epidemiologiaRESUMO
Coronavirus disease 2019 symptom definitions rarely include symptom severity. We collected daily nasal swab samples and symptom diaries from contacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case patients. Requiring ≥1 moderate or severe symptom reduced sensitivity to predict SARS-CoV-2 shedding from 60.0% (95% confidence interval [CI], 52.9%-66.7%) to 31.5% (95% CI, 25.7%-â 38.0%) but increased specificity from 77.5% (95% CI, 75.3%-79.5%) to 93.8% (95% CI, 92.7%-94.8%).