Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 107027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096682

RESUMO

The ongoing research in cancer treatment underscores the significance of dual epidermal growth factor receptor (EGFR) kinase inhibitors targeting both mutant and wild-type variants. In this study, employing in silico fragment-based drug design (FBDD) and computational analysis, we have successfully developed a novel chemical series of 2-(pyrimidin-4-yl)oxazole-4-carboxamide (16a-j) derivatives designed as dual EGFR kinase inhibitors. A comparative in vitro anticancer profile of the newly synthesized compounds (16a-j) was tested against a panel of five human cancer cell lines like prostate cancer (PC3 & DU-145), lung cancer (A549), human liver cancer (HEPG2), and breast cancer (MDA-MB-468) by employing MTT method. In this experiment a well-known anticancer agent, Etoposide was used as positive control. Most of the derivatives demonstrated significant cytotoxicity, ranging from excellent to moderate levels. The IC50 values for the synthesized compounds observed between 0.10 ± 0.052 to 9.83 ± 5.96 µM, while the positive control exhibited a range of 1.97 ± 0.45 µM to 3.08 ± 0.135 µM. These results indicate that the synthesized compounds demonstrate higher cytotoxic potency in comparison to the reference compound. Furthermore, all these compounds underwent screening against normal Vero cell lines to assess their cytotoxicity. In each case, the observed cytotoxicity values (IC50) were higher than 22 µM, affirming the compounds selectivity for cancer cell lines. Among the compounds investigated, three compounds (16a, 16e, and 16i) exhibited notable cytotoxicity, while two compounds (16g and 16h) demonstrated exceptional cytotoxicity. The selectivity index of the tested compounds indicates a pronounced preference for targeting cancer cell lines over normal cells. Furthermore, all the compounds 16a-j underwent assessment for their EGFR kinase inhibitory activity against both EGFRWT and mutated EGFRT790M. The results unveiled the potential eligibility of this new series of compounds as effective EGFR inhibitors. Moreover, compound 16h underwent additional testing for cell cycle analysis, revealing its capability to arrest the cell cycle in the G2/M phase and induce apoptosis at the IC50 concentration.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptores ErbB , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Mutação , Antineoplásicos/química , Simulação de Acoplamento Molecular
2.
Mol Divers ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632595

RESUMO

Dengue is an emerging, mosquito-borne viral disease of international public health concern. Dengue is endemic in more than 100 countries across the world. However, there are no clinically approved antivirals for its cure. Drug repurposing proves to be an efficient alternative to conventional drug discovery approaches in this regard, as approved drugs with an established safety profile are tested for new indications, which circumvents several time-consuming experiments. In the present study, eight approved RNA-dependent RNA polymerase inhibitors of Hepatitis C virus were virtually screened against the Dengue virus polymerase protein, and their antiviral activity was assessed in vitro. Schrödinger software was used for in silico screening, where the compounds were passed through several hierarchical filters. Among the eight compounds, dasabuvir was finally selected for in vitro cytotoxicity and antiviral screening. Cytotoxicity profiling of dasabuvir in Vero cells revealed changes in cellular morphology, cell aggregation, and detachment at 50 µM. Based on these results, four noncytotoxic concentrations of dasabuvir (0.1, 0.25, 0.5, and 1 µM) were selected for antiviral screening against DENV-2 under three experimental conditions: pre-infection, co-infection, and post-infection treatment, by plaque reduction assay. Viral plaques were reduced significantly (p < 0.05) in the co-infection and post-infection treatment regimens; however, no reduction was observed in the pretreatment group. This indicated a possible interference of dasabuvir with NS5 RdRp, as seen from in silico interaction studies, translating into a reduction in virus plaques. Such studies reiterate the usefulness of drug repurposing as a viable strategy in antiviral drug discovery. In this drug repurposing study, dasabuvir, a known anti-hepatitis C drug, was selected through virtual screening and assessed for its anti-dengue activity.

3.
Curr Genet ; 68(1): 49-60, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34787710

RESUMO

Magic spot synthetases are emerging targets to overcome persistence caused by stringent response. The 'stringent response' is a bacterial stress survival mechanism, which results in the accumulation of alarmones (also called Magic spots) leading to the formation of dormant persister cells. These 'sleeper cells' evade antibiotic treatment and could result in relapse of infection. This review broadly investigates the phenomenon of stringent response and persistence, and specifically discusses the distribution, classification, and nomenclature of proteins such as Rel/SpoT homologs (RSH), responsible for alarmone synthesis. The authors further explain the relevance of RSH as potential drug targets to break the dormancy of persister cells commonly seen in biofilms. One of the significant factors that initiate alarmone synthesis is nutrient deficiency. In a starved condition, ribosome-associated RSH detects deacylated tRNA and initiates alarmone synthesis. Accumulation of alarmones has a considerable effect on bacterial physiology, virulence, biofilm formation, and persister cell formation. Preventing alarmone synthesis by inhibiting RSH responsible for alarmone synthesis will prevent or reduce persister cells' formation. Magic spot synthetases are thus potential targets that could be explored to overcome persistence seen in biofilms.


Assuntos
Proteínas de Bactérias , Ligases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/metabolismo , Ligases/genética , Virulência/genética
4.
FASEB J ; 35(10): e21892, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569651

RESUMO

Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.


Assuntos
Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Fator de Transcrição STAT1/metabolismo , Animais , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosforilação , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/metabolismo , Fator de Transcrição STAT1/genética
5.
Bioorg Chem ; 124: 105857, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594765

RESUMO

Addressing the increasing incidences of cancer worldwide along with the multifaceted problem of drug resistance via development of new anticancer agents has become an essential goal. Due to the known cytotoxic effects and reported Akt inhibitory potential of azaindoles we designed a new framework incorporating the structural features of rosuvastatin and 5- or 7-azaindole. The framework was used to construct a library of small molecules for further pharmacological evaluation. The design was supported by the docking studies of two representative molecules in silico. A one-pot sonochemical approach was established for the synthesis of these rosuvastatin based azaindoles that involved the coupling-cyclization of a rosuvastatin derived terminal alkyne with appropriate 3-iodopyridine derivatives under Pd/Cu-catalysis. When tested using an MTT assay, some of the synthesized compounds showed desirable cytotoxic effects against three cancer cell lines e.g. HCT 116, Hep G2 and PA-1 but no significant effects against the non-cancerous HEK cell line. According to the SAR the 5-azaindole ring appeared to be marginally better than the 7-azaindole whereas the activity was varied with the variation of sulfonamide moiety attached to the N-1 atom of the azaindole ring. Among all the groups present in the sulfonamide moiety the p-MeC6H4 group appeared to be most effective in terms of activity. While 3b and 5b were identified as initial hit molecules the compound 5b (in addition to 3b) also showed significant inhibition of Akt1 in vitro that was reflected by its strong interaction with Akt1 in silico (with the docking score -11.7 kcal/mol) involving two H-bonding interactions with Ser7 and Asp439 residues. Further, a reasonable ADME was predicted for 5bin silico. Being a potent inhibitor (MIA Paca-2 IC50 = 18.79 ± 0.17 nM) and with NOAEL (No Observed Adverse Effect Level) > 100 µM in Zebrafish, 5b emerged as a promising compound.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Proliferação de Células , Ciclização , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Rosuvastatina Cálcica/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Peixe-Zebra
6.
Arch Pharm (Weinheim) ; 355(10): e2200146, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35665957

RESUMO

A new series of 2-aminobenzothiazole derivatives was designed, synthesized and evaluated for their anticancer activity against the MCF7, MDAMB-231, and HepG2 cancer cell lines. All synthesized derivatives (8a-8n) demonstrated moderate to high anticancer activity against the tested cell lines. As the most potent compound in the series, compound 8i displayed excellent inhibitory potency with an IC50 value of 6.34 µM and compound 8m displayed an IC50 value of 8.30 µM against the MCF7 cell line compared to the standard drug HS-173 (IC50 = 10.25 µM). PI3K enzyme activity assays demonstrated that compound 8i is highly selective against PI3Kα, with an IC50 value of 1.03 nM. Wound healing assays and cell cycle analysis of compounds 8i and 8m revealed that both compounds suppressed the migration of MCF7 cells and induce cell cycle arrest in the S phase. In the cell death assay, compound 8i was revealed to induce apoptosis in a dose-dependent pattern; further Western blot assays revealed that compound 8i obviously decreases the levels of the antiapoptotic proteins Bcl-xL and Mcl-1. Downregulation of the expression of p-Akt confirmed the PI3K inhibitory activity of compound 8i. The molecular docking and molecular dynamics simulation studies performed were found in agreement with the PI3Kα inhibitory activity assessments performed experimentally.


Assuntos
Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Relação Estrutura-Atividade
7.
Drug Dev Res ; 83(4): 859-890, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297084

RESUMO

Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Receptores de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular
8.
Drug Dev Res ; 83(7): 1555-1577, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35898169

RESUMO

We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a-7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Antineoplásicos/química , Doxorrubicina/farmacologia , Indóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Apoptose
9.
Toxicol Mech Methods ; 29(5): 334-343, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30588862

RESUMO

Para-methoxycinnamic acid (PMCA) and Ethyl-p-methoxycinnamate (EPMC) are reported to possess neuroprotective effect in reversing an acute memory deficit. However, there is a dearth of evidence for their therapeutic effect in chronic memory deficit. Thus, there is a scope to study these derivatives against the chronic model of cognitive dysfunction. The present study was aimed to determine the cognitive enhancing activity of PMCA and EPMC in aluminum-induced chronic dementia. Cognitive enhancing property of PMCA and EPMC was assessed using Morris water maze by analyzing spatial memory parameters such as escape latency, D-quadrant latency, and island entries. To find a possible mechanism, the effect of test compounds on altered acetylcholinesterase (AChE) activity and oxidative stress was determined in the hippocampus and frontal cortex of rats. Docking interaction of these derivatives with acetylcholinesterase enzyme and glutamate receptors was also studied. Treatment with PMCA and EPMC showed a significant improvement in spatial memory markers and altered hippocampal AChE activity in rats with cognitive dysfunction. The implication of hippocampal and cortical oxidative stress in memory impairment was confirmed with decreased catalase/increased thiobarbituric acid reactive substances (TBARS) in rats. PMCA and EPMC reversed the oxidative stress in the brain by negatively affecting TBARS levels. Against depleted catalase levels, PMCA was more effective than EPMC in raising the depleted catalase levels. In silico analysis revealed poor affinity of EPMC and PMCA with AChE enzyme and glutamate receptor. To conclude, PMCA and EPMC exerted cognitive enhancing property independent of direct AChE and glutamate receptor inhibition.


Assuntos
Alumínio/toxicidade , Cinamatos/farmacologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/enzimologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Memória Espacial/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-30996391

RESUMO

The digital thread links disparate systems across the product lifecycle to support data curation and information cultivation and enable data-driven applications, e.g., digital twin. Realizing the digital thread requires the integration of semantically-rich, open standards to facilitate the dynamic creation of context based on multiple viewpoints. This research develops such an approach to link as-planned (ISO 6983) to as-fabricated (MTConnect) product data using dynamic time warping. Applying this approach to a production part enabled the designer to make a more optimal decision from the perspective of the product lifecycle that would have otherwise been challenging to identify.

12.
Chem Pharm Bull (Tokyo) ; 65(9): 833-839, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28867710

RESUMO

The enzyme tyrosinase regulates melanogenesis and skin hyperpigmentation by converting L-3,4-dihydroxyphenylalanine (L-DOPA) into dopaquinone, a key step in the melanin biosynthesis. The present work deals with design and synthesis of various oxindole-based chalcones as monophenolase and diphenolase activity inhibitors of tyrosinase. Among the screened compounds, 4-hydroxy-3-methoxybenzylidene moiety bearing chalcone (7) prepared by one pot reaction of oxindole and vanillin displayed the highest activity against tyrosinase with IC50s of 63.37 and 59.71 µM in monophenolase and diphenolase activity assays, respectively. In molecular docking studies, chalcone 7 also showed the highest binding affinity towards the enzyme tyrosinase while exhibiting the lowest estimated free energy of binding, among all the ligands docked.


Assuntos
Chalconas/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Animais , Benzaldeídos/química , Sítios de Ligação , Domínio Catalítico , Chalconas/síntese química , Chalconas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Indóis/química , Concentração Inibidora 50 , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Oxindóis , Ratos
13.
Bioorg Med Chem Lett ; 25(22): 5281-5, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428872

RESUMO

The 3-substituted oxindole derivatives were designed, synthesized, and evaluated for antidepressant activity by employing forced swimming test, tail suspension test, and MAO-A inhibition assay. Results of biological studies revealed that the majority of compounds exhibited potent to moderately potent activity and among them, 12 displayed potency comparable to that of the imipramine with %DID of 37.95 and 44.84 in the FST and TST, respectively. At the same time, imipramine showed %DID of 43.62 and 50.64 in the FST and TST, correspondingly. In the MAO-A inhibition assay, 12 showed an IC50 of 18.27 µmol, whereas the reference drug moclobemide displayed an IC50 of 13.1 µmol. The SAR study disclosed that the presence of bromo atom at the phenyl/furanyl or thienyl moiety in the oxindole derivatives was critical for the antidepressant activity.


Assuntos
Antidepressivos/química , Compostos de Benzilideno/química , Indóis/química , Lactamas/química , Inibidores da Monoaminoxidase/química , Animais , Antidepressivos/síntese química , Antidepressivos/farmacologia , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/farmacologia , Clorgilina/farmacologia , Imipramina/farmacologia , Indóis/síntese química , Indóis/farmacologia , Lactamas/síntese química , Lactamas/farmacologia , Camundongos , Moclobemida/farmacologia , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/farmacologia , Relação Estrutura-Atividade
14.
Curr Nutr Rep ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760619

RESUMO

PURPOSE OF REVIEW: Low-glycemic diets are crucial, particularly for individuals with diet-related diseases such as obesity and diabetes. Therefore, observing the impact of multiple forms of red beetroot-based products on the glycemic profiles of humans under various health conditions has arguably become significant due to beetroot's high fiber content, antioxidants, inorganic nitrates, etc., which this review aims to summarize. RECENT FINDINGS: The relevant articles published between 2000 and 2022 were obtained from PubMed, Scopus, and ScienceDirect by following the PRISMA-P 2020 statement. This systematic review included 18 randomized controlled trials (RCTs), one non-randomized clinical trial (non-RCT), and one quasi-experimental (QE) study, and they covered different health conditions, e.g., type-2 diabetes mellitus (T2DM), obesity, hypertension, etc. The studies produced conflicting results, likely due to differences in the study design, dosage, duration, and population. The risk of bias in most of the RCTs and QE studies included in the review was assessed as low or moderate, and only one non-RCT was assessed as having a high risk of bias. Red beetroot may help maintain the blood sugar levels of humans under different health conditions. However, the existing results on beetroot's potential for glycemic management are unclear due to varied outcomes across studies. Further intervention studies with standardized protocols and diverse participant groups are necessary to assess the role of beetroot products in regulating blood sugar levels before making a definitive judgment.

15.
RSC Med Chem ; 15(5): 1626-1639, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784476

RESUMO

The epidermal growth factor receptor (EGFR) enzyme plays a critical role in governing the cell cycle, positioning it as a promising target for the development of anticancer drugs. In this study, we endeavored to design and synthesize innovative EGFR inhibitors with potential applications in anticancer therapy. A novel series of compounds, namely 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazoles (30a-j), were meticulously designed using FBDD efforts and synthesized. The synthesized compounds underwent thorough characterization using 1HNMR, 13CNMR, HRMS, and mass spectrum analyses. The in vitro anticancer activities of the newly developed compounds (30a-j) were evaluated against four human cancer cell lines such as prostate cancer (PC3 & DU-145), lung cancer (A549), and liver cancer (HEPG2) using the MTT method. The results, expressed as IC50 values, demonstrated significant anticancer activity for several compounds, with five compounds (30a, 30b, 30c, 30i, and 30j) exhibiting superior potency compared to the established anticancer drug etoposide. Notably, compound 30a emerged as the most promising compound, displaying potent cytotoxicity. We also conducted a screening of the compounds on the normal Vero cell line, revealing a pronounced selectivity of the compounds against cancer cell lines, with no observable impact on the normal cell lines. Moreover, the synthesized compounds were investigated for their impact on enzyme EGFR activity. The findings revealed a robust inhibitory effect against the EGFR wild-type enzyme and a 10-fold inferior potency against the mutant form of EGFR. This observation underscores the potential of the new derivatives as effective EGFRWT inhibitors with substantial anticancer efficacy. Further studies, including cell cycle analysis and apoptosis assays in HEPG2 cell lines, revealed cell cycle arrest at G1/G0 and G2 phases. We also evaluated the potential influence of compound 30a on the EGFR pathway using western blot analysis, revealing a significant inhibition of EGFR autophosphorylation in HEPG2 cells. In conclusion, our findings highlight the promise of these novel compounds as potent EGFR inhibitors, encouraging further investigation and development for the creation of novel and effective anticancer therapeutics.

16.
Adv Pharm Bull ; 14(1): 11-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585454

RESUMO

Purpose: Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods: Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results: Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion: This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.

17.
J Dent Educ ; 88(6): 856-864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348972

RESUMO

OBJECTIVE: To investigate the prevalence of self-reported depressive symptoms among predoctoral dental students in the United States and examine potential correlates. METHODS: A survey was emailed to all 66 dental schools in the United States, inviting them to distribute it to their predoctoral students. Depressive symptoms were assessed using the Patient Health Questionnaire-9. Data collection occurred from February to April 2020. Multivariable ordinal logistic regression was used to assess associations between demographic variables and depressive symptom severity category, adjusting for potential confounding. RESULTS: Of an estimated 25,000 predoctoral dental students at the 66 schools, 631 students from 21 schools completed the survey. A total of 24.1% were categorized as having minimal or no depressive symptoms, 33.6% as having mild depressive symptoms, and 42.3% as having moderate, moderately severe, or severe depressive symptoms. Gender (p = 0.015) and race/ethnicity (p = 0.002) were significant predictors of severity, adjusting for other variables. Students identifying as female had higher odds of self-reporting greater depressive severity symptoms compared with students identifying as male. Students identifying as African American/Black (non-Hispanic) and Asian/Pacific Islander had higher odds of self-reporting greater depressive severity symptoms compared with students identifying as White. CONCLUSION: There is evidence of a high prevalence of depressive symptoms among predoctoral dental students in the United States. Demographic variables may be risk indicators within this population. Approaches to reduce depressive symptoms among US predoctoral dental students are needed.


Assuntos
Depressão , Estudantes de Odontologia , Humanos , Estudantes de Odontologia/psicologia , Estudantes de Odontologia/estatística & dados numéricos , Depressão/epidemiologia , Estados Unidos/epidemiologia , Masculino , Feminino , Prevalência , Autorrelato , Adulto Jovem , Adulto , Faculdades de Odontologia , Inquéritos e Questionários , Fatores Sexuais , Educação em Odontologia , Etnicidade/estatística & dados numéricos
18.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378526

RESUMO

Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.

19.
J Biomol Struct Dyn ; 41(8): 3462-3475, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35285757

RESUMO

Inflammatory bowel disease is a chronic disorder of the large intestine with the prevalence of approximately 400 cases in 100000, and it is rising day by day. However, several drugs like sulfasalazine (composed of sulfapyridine and 5-aminosalicylic acid or 5-ASA), corticosteroids, and immunosuppressants manage the disease. But there are no absolute treatments for the pain and inflammation of the disease. TNFα is an important target, and drugs like infliximab and adalimumab have pharmacological potency but with pronounced toxicity. So, we choose this major target TNFα for the virtual screening of US-FDA-approved drugs for its repurposing using the in silico method. The protein TNFα (PDB ID: 2AZ5) with small molecule inhibitor and the US-FDA-approved drug molecules (from Zinc database) were first imported and prepared using Protein Preparation Wizard and LigPrep, respectively, followed by molecular docking, ADMET analysis and prime MMGBSA. After that, the drugs were shortlisted according to dock score, ADMET parameters and MM GBSA dG binding score. After that, the shortlisted drug molecules were subjected to an induced-fit docking analysis. Two of the most promising molecules, ZINC000003830957 (Iopromide) and ZINC000003830635 (Deferoxamine), were chosen for molecular dynamics simulation. Finally, the bioisosteric replacement was used to improve the ADMET properties of these molecules. This research provides an idea for drug exploration and computational tools for drug discovery in treating inflammatory bowel disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Humanos , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Doenças Inflamatórias Intestinais/tratamento farmacológico
20.
J Educ Health Promot ; 12: 202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545989

RESUMO

BACKGROUND: Functional disability develops in a dynamic and progressive manner. As people age, their health problems worsen and they lose the ability to perform activities of daily living (ADLs) such as dressing, using the toilet, bathing, and eating. With a better understanding of the underlying risk factors and the related mechanisms of the disablement process, it is possible to make more effective and more efficient programs to prevent or delay the onset of disability in older people. MATERIALS AND METHODS: A community-based, descriptive, cross-sectional study was carried out among 453 elderly from Tamil Nadu, India. A door-to-door interview was used to administer the Katz Index of Independence on ADL. Simple random selection was employed to select the study individuals. To determine the association for particular risk factors, Chi-squared test and binary logistic regression were used. RESULTS: First, our study findings show the prevalence of activity limitation among the elderly using the The Katz Index of Independence. This study shows that the prevalence of activity limitation was 23% among the elderly. Seventy-seven percent had no significant limitations: they are independent. There is a statistically significant association between activity limitation as opposed to gender, visual impairment, depression, urinary incontinence, unintentional injury in the past year, and alcohol consumption. CONCLUSION: The study found that the self-reported prevalence of activity limitation was 23% among the elderly and 77% had no significant limitations. The Katz Index of Independence in activities of daily living may be used as a handy tool to identify the activity limitation in community-based checkups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA