Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597314

RESUMO

Rare-earth doped materials are of immense interest for their potential applications in linear and nonlinear photonics. There is also intense interest in sub-nanometer gold clusters due to their enhanced stability and unique optical, magnetic, and catalytic properties. To leverage their emergent properties, here we report a systematic study of the geometries, stability, electronic, magnetic, and linear and nonlinear optical properties of Au5RE (RE = Sc, Y, La-Lu) clusters using density-functional theory. Several low-energy isomers consisting of planar or non-planar configurations are identified. For most doped clusters, the non-planar configuration is energetically favored. In the case of La-, Pm-, Gd-, and Ho-doped clusters, a competition between planar and non-planar isomers is predicted. A distinct preference for the planar configuration is predicted for Au5Eu, Au5Sm, Au5Tb, Au5Tm, and Au5Yb. The distinction between the planar and non-planar configurations is highlighted by the calculated highest frequencies, with the stretching mode of the non-planar configuration predicted to be stiffer than the planar configuration. The bonding analysis reveals the dominance of the RE-d orbitals in the formation of frontier molecular orbitals, which, in turn, facilitates retaining the magnetic characteristics governed by RE-f orbitals, preventing spin-quenching of rare earths in the doped clusters. In addition, the doped clusters exhibit small energy gaps between frontier orbitals, large dipole moments, and enhanced hyperpolarizability compared to the host cluster.

2.
Phys Chem Chem Phys ; 23(28): 15209-15215, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34231587

RESUMO

A wide range of low oxidation state aluminum-containing cluster anions, LAln- (n = 1-14, L = N[Si(Me)3]2), were produced via reactions between aluminum cluster anions and hexamethyldisilazane (HMDS). These clusters were identified by mass spectrometry, with a few of them (n = 4, 6, and 7) further characterized by a synergy of anion photoelectron spectroscopy and density functional theory (DFT) based calculations. As compared to a previously reported method which reacts anionic aluminum hydrides with ligands, the direct reactions between aluminum cluster anions and ligands promise a more general synthetic scheme for preparing low oxidation state, ligated aluminum clusters over a large size range. Computations revealed structures in which a methyl-group of the ligand migrated onto the surface of the metal cluster, thereby resulting in "two metal-atom" insertion between Si-CH3 bond.

3.
J Chem Phys ; 155(12): 121101, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598566

RESUMO

Ever since our first experimental and computational identification of Al4H6 as a boron analog [X. Li et al., Science 315, 356 (2007)], studies on aluminum hydrides unveiled a richer pattern of structural motifs. These include aluminum-rich hydrides, which follow shell closing electron counting models; stoichiometric clusters (called baby crystals), which structurally correspond to the bulk alane; and more. In this regard, a mass spectral identification of unusually high intense peak of Al4H14 -, which has two hydrogen atoms beyond stoichiometry, has remained mostly unresolved [X. Li et al., J. Chem. Phys. 132, 241103 (2010)]. In this Communication, with the help of global minima methods and density functional theory-based calculations, we identify the lowest energy bound structure with a unique Al-H-H-Al bonding. Our electronic structural analysis reveals that two Al2H6 units trap a transient, metastable H2 -. In other words, three stable molecules, two Al2H6 and an H2, are held together by a single electron. Our studies provide a pathway to stabilize transient species by making them part of a more extensive system.

4.
Phys Chem Chem Phys ; 19(23): 15541-15548, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28581549

RESUMO

Several low oxidation state aluminum-containing cluster anions, LAlH- and LAln- (n = 2-4, L = N[Si(Me)3]2), were produced via reactions between aluminum hydride cluster anions, AlxHy-, and hexamethyldisilazane (HMDS). These clusters were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory (DFT) based calculations. Agreement between the experimental and theoretical vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands promise to be a new synthetic scheme for low oxidation state, ligated aluminum clusters.

5.
J Chem Phys ; 145(7): 074305, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544103

RESUMO

Three new, low oxidation state, aluminum-containing cluster anions, Cp*AlnH(-), n = 1-3, were prepared via reactions between aluminum hydride cluster anions, AlnHm (-), and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

6.
Phys Chem Chem Phys ; 17(40): 26589-93, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26394536

RESUMO

Superhalogens belong to a class of molecules that not only mimic the chemistry of halogen atoms but also possess electron affinities that are much larger than that of chlorine, the element with the highest electron affinity in the periodic table. Using BO2 as an example and the synergy between density functional theory-based calculations and photoelectron spectroscopy experiments we demonstrate another unusual property of superhalogens. Unlike halogens, whose ability to accept an electron falls upon dimerization, B2O4, the dimer of BO2, has an electron affinity larger than that of the BO2 building block. This ability of (BO2)2 and subsequent, higher oligomers (BO2)n (n = 3 and 4), to retain their superhalogen characteristics can be traced to the enhanced bonding interactions between oxygen and boron atoms and due to the delocalization of the charge of the extra-electron over the terminal oxygen atoms. These results open the door to the design and synthesis of a new class of metal-free highly negative ions with potential for novel applications.


Assuntos
Compostos de Boro/química , Halogênios/química , Elétrons , Espectroscopia Fotoeletrônica , Teoria Quântica
7.
Phys Chem Chem Phys ; 16(47): 26067-74, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25361065

RESUMO

The electronic and structural properties of neutral and anionic Agn(BO2)m (n = 1-3, m = 1-2) clusters are investigated by using mass-selected anion photoelectron spectroscopy and density functional theory calculations. Agreement between the measured and calculated vertical detachment energies (VDEs) allows us to validate the equilibrium geometries of [Agn(BO2)m](-) clusters obtained from theory. The ground state structures of anionic Ag2(BO2) and Agn(BO2)2 (n = 1-3) clusters are found to be very different from those of their neutral counterparts. The structures of anionic clusters are chain-like while those of the neutral clusters are closed-rings. The presence of multiple isomers for [Ag2(BO2)2](-) and [Ag3(BO2)2](-) in the cluster beam has also been confirmed. Several of these clusters are found to be hyperhalogens.

8.
J Chem Phys ; 140(12): 124309, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697443

RESUMO

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of MgmAln (-) (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg3Al11 and Mg2Al12 (-), did the aluminum moieties exhibit Zintl anion-like characteristics.

9.
J Chem Phys ; 140(16): 164317, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24784280

RESUMO

Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz(-), were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

10.
J Chem Phys ; 140(5): 054301, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511934

RESUMO

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

11.
Chemphyschem ; 14(14): 3303-8, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23943601

RESUMO

Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect.

12.
J Phys Chem A ; 117(6): 1310-8, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23116139

RESUMO

Using density functional theory based calculations, we have systematically studied the equilibrium geometries, relative stabilities, and electronic and magnetic properties of Fe and Mn atoms interacting with a varying number of BO(2) moieties. These clusters are found to exhibit hyperhalogen behavior with electron affinities as high as 6.9 eV once the number of BO(2) moieties exceed the nominal valences of these transition metals toms, namely 2 for both Fe and Mn. In all cases the transition metal atoms retain a sizable spin magnetic moment, even exceeding their free atom values at certain compositions. We also note that when more than two BO(2) moieties are bound to neutral Fe and Mn atoms, they tend to dimerize. In the case of negative ions, this process occurs at n ≥ 3, thus leading to different neutral and anionic ground state geometries. The effect of these structural changes in the interpretation of photoelectron spectroscopy experiments is discussed.


Assuntos
Compostos de Boro/química , Ferro/química , Manganês/química , Elétrons , Campos Magnéticos , Teoria Quântica
13.
J Chem Phys ; 139(24): 244307, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24387370

RESUMO

The electron transport properties of the cubic quantum dot, (PbS)32, are investigated. The stability of the quantum dot has been established by recent scanning tunneling microscope experiments [B. Kiran, A. K. Kandalam, R. Rallabandi, P. Koirala, X. Li, X. Tang, Y. Wang, H. Fairbrother, G. Gantefoer, and K. Bowen, J. Chem. Phys. 136(2), 024317 (2012)]. In spite of the noticeable energy band gap (~2 eV), a relatively high tunneling current for (PbS)32 is predicted affirming the observed bright images for (PbS)32. The calculated I-V characteristics of (PbS)32 are predicted to be substrate-dependent; (PbS)32 on the Au (001) exhibits the molecular diode-like behavior and the unusual negative differential resistance effect, though this is not the case with (PbS)32 on the Au (110). Appearance of the conduction channels associated with the hybridized states of quantum dot and substrate together with their asymmetric distribution at the Fermi level seem to determine the tunneling characteristics of the system.

14.
J Chem Phys ; 137(13): 134303, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23039595

RESUMO

Using global-minima search methods based on the density functional theory calculations of (AlH(3))(n) (n = 1-8) clusters, we show that the growth pattern of alanes for n ≥ 4 is dominated by structures containing hexa-coordinated Al atoms. This is in contrast to the earlier studies where either linear or ring structures of AlH(3) were predicted to be the preferred structures in which the Al atoms can have a maximum of five-fold coordination. Our calculations also reveal that the Al(6)H(18) cluster, with its hexa-coordination of the Al atoms, resembles the unit-cell of γ-AlH(3), thus Al(6)H(18) is designated as the "baby crystal." The fragmentation energies of the (AlH(3))(n) (n = 2-8) along with the dimerization energies for even n clusters indicate an enhanced stability of the Al(6)H(18) cluster. Both covalent (hybridization) and ionic (charge) contribution to the bonding are the driving factors in stabilizing the isomers containing hexa-coordinated Al atoms.

15.
J Chem Phys ; 136(2): 024317, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22260589

RESUMO

Theoretical calculations based on density functional theory have found (PbS)(32) to be the smallest cubic cluster for which its inner (PbS)(4) core enjoys bulk-like coordination. Cubic (PbS)(32) is thus a "baby crystal," i.e., the smallest cluster, exhibiting sixfold coordination, that can be replicated to obtain the bulk crystal. The calculated dimensions of the (PbS)(32) cluster further provide a rubric for understanding the pattern of aggregation when (PbS)(32) clusters are deposited on a suitable surface, i.e., the formation of square and rectangular, crystalline nano-blocks with predictable dimensions. Experiments in which mass-selected (PbS)(32) clusters were soft-landed onto a highly ordered pyrolytic graphite surface and the resulting aggregates imaged by scanning tunneling microscopy provide evidence in direct support of the computational results.

16.
J Chem Phys ; 135(20): 204301, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22128929

RESUMO

Iron-pyrene cluster anions, [Fe(m)(pyrene)(n)](-) (m = 1-2, n = 1-2) were studied in the gas phase by photoelectron spectroscopy, resulting in the determination of their electron affinity and vertical detachment energy values. Density functional theory calculations were also conducted, providing the structures and spin multiplicities of the neutral clusters and their anions as well as their respective electron affinity and vertical detachment energy values. The calculated magnetic moments of neutral Fe(1)(pyrene)(1) and Fe(2)(pyrene)(1) clusters suggest that a single pyrene molecule could be a suitable template on which to deposit small iron clusters, and that these in turn might form the basis of an iron cluster-based magnetic material. A comparison of the structures and corresponding photoelectron spectra for the iron-benzene, iron-pyrene, and iron-coronene cluster systems revealed that pyrene behaves more similarly to coronene than to benzene.

17.
J Chem Phys ; 134(9): 094309, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21384971

RESUMO

The electronic structures of CuBO(2)(-), Cu(BO(2))(2)(-), Cu(2)(BO(2))(-), and Cu(2)(BO(2))(2)(-) clusters were investigated using photoelectron spectroscopy. The measured vertical and adiabatic detachment energies of these clusters revealed unusual properties of Cu(BO(2))(2) cluster. With an electron affinity of 5.07 eV which is larger than that of its BO(2) superhalogen (4.46 eV) building-block, Cu(BO(2))(2) can be classified as a hyperhalogen. Density functional theory based calculations were carried out to identify the ground state geometries and study the electronic structures of these clusters. Cu(BO(2)) and Cu(BO(2))(2) clusters were found to form chainlike structures in both neutral and anionic forms. Cu(2)(BO(2)) and Cu(2)(BO(2))(2) clusters, on the other hand, preferred a chainlike structure in the anionic form but a closed ringlike structure in the neutral form. Equally important, substantial differences between adiabatic detachment energies and electron affinities were found, demonstrating that correct interpretation of the experimental photoelectron spectroscopy data requires theoretical support not only in determining the ground state geometry of neutral and anionic clusters, but also in identifying their low lying isomers.

18.
J Chem Phys ; 135(13): 134311, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21992309

RESUMO

The geometric and electronic structures of both neutral and negatively charged lead sulfide clusters, (PbS)(n)/(PbS)(n)(-) (n = 2-10) were investigated in a combined anion photoelectron spectroscopy and computational study. Photoelectron spectra provided vertical detachment energies (VDEs) for the cluster anions and estimates of electron affinities (EA) for their neutral cluster counterparts, revealing a pattern of alternating EA and VDE values in which even n clusters exhibited lower EA and VDE values than odd n clusters up until n = 8. Computations found neutral lead sulfide clusters with even n to be thermodynamically more stable than their immediate (odd n) neighbors, with a consistent pattern also being found in their HOMO-LUMO gaps. Analysis of neutral cluster dissociation energies found the Pb(4)S(4) cube to be the preferred product of the queried fragmentation processes, consistent with our finding that the lead sulfide tetramer exhibits enhanced stability; it is a magic number species. Beyond n = 10, computational studies showed that neutral (PbS)(n) clusters in the size range, n = 11-15, prefer two-dimensional stacking of face-sharing lead sulfide cubical units, where lead and sulfur atoms possess a maximum of five-fold coordination. The preference for six-fold coordination, which is observed in the bulk, was not observed at these cluster sizes. Taken together, the results show a preference for the formation of slightly distorted, fused cuboids among small lead sulfide clusters.

19.
Chemphyschem ; 11(4): 853-8, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20186907

RESUMO

We report the discovery of a new class of clusters consisting of Au(n)(BO(2)) that forms during the oxygenation of gold clusters when boron nitride is used as insulation in a pulsed-arc cluster ion source (PACIS). Photoelectron and mass spectroscopy of these clusters further revealed some remarkable properties: instead of the expected Au(n)O(m) peaks, the mass spectra contain intense peaks corresponding to Au(n)(BO(2)) composition. Some of the most predominant features of the electronic structure of the bare Au clusters, namely even-odd alternation in the electron affinity, are preserved in the Au(n)(BO(2)) species. Most importantly, Au(n)(BO(2)) [odd n] clusters possess unusually large electron affinity values for a closed-shell cluster, ranging from 2.8-3.5 eV. The open-shell Au(n)(BO(2)) [even n] clusters on the other hand, possess electron affinities exceeding that of F, the most electronegative element in the periodic table. Using calculations based on density functional theory, we trace the origin of these species to the unusual stability and high electron affinity of the BO(2) moiety. The resulting bond formed between BO(2) and Au(n) clusters preserves the geometric and electronic structure of the bare Au(n) clusters. The large electron affinity of these clusters is due to the delocalization of the extra electron over the Au(n) cluster.

20.
J Chem Phys ; 132(10): 104304, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20232957

RESUMO

The chemical reactivity of neutral, cationic, and anionic species of the gas phase B(13) cluster with molecular oxygen, O(2), was investigated using density functional theory. All three species of B(13) interact with an oxygen molecule to generate a variety of stable isomers, with those representing a dissociative chemisorption process forming the most stable configurations. Our results also show site-specific bonding of oxygen to the B(13)((+/0/-)) cluster. The effect of sequential ionization on the formation of products is pronounced. In ionic B(13) clusters, in addition to energetics, the spin of the reactants and products plays a vital role in determining the most favorable product channel. In addition, this study reveals a richness of phenomena requiring a unified consideration of energy, geometry, spin conversion, and details of the electronic structure not previously illustrated for the reactivity of boron clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA